This content will become publicly available on March 1, 2025
- Award ID(s):
- 1946202
- PAR ID:
- 10498162
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materialia
- Volume:
- 33
- Issue:
- C
- ISSN:
- 2589-1529
- Page Range / eLocation ID:
- 102024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Edited by Aldo Boccaccini, Himansu Sekhar (Ed.)Bone tissue engineering (BTE) aims to develop strategies to regenerate damaged or diseased bone using a combination of cells, growth factors, and biomaterials. This article highlights recent advances in BTE, with particular emphasis on the role of the biomaterials as scaffolding material to heal bone defects. Studies encompass the utilization of bioceramics, composites, and myriad hydrogels that have been fashioned by injection molding, electrospinning, and 3D bioprinting over recent years, with the aim to provide an insight into the progress of BTE along with a commentary on their scope and possibilities to aid future research. The biocompatibility and structural efficacy of some of these biomaterials are also discussed.more » « less
-
ABSTRACT Strain magnitude has a controlling influence on bone adaptive response. However, questions remain as to how and if cancellous and cortical bone tissues respond differently to varied strain magnitudes, particularly at a molecular level. The goal of this study was to characterize the time‐dependent gene expression, bone formation, and structural response of the cancellous and cortical bone of female C57Bl/6 mice to mechanical loading by applying varying load levels (low: −3.5 N; medium: −5.2 N; high: −7 N) to the skeleton using a mouse tibia loading model. The loading experiment showed that cortical bone mass at the tibial midshaft was significantly enhanced following all load levels examined and bone formation activities were particularly elevated at the medium and high loads applied. In contrast, for the proximal metaphyseal cancellous bone, only the high load led to significant increases in bone mass and bone formation indices. Similarly, expression of genes associated with inhibition of bone formation (e.g.,
Sost ) was altered in the diaphyseal cortical bone at all load levels, but in the metaphyseal cortico‐cancellous bone only by the high load. Finite element analysis determined that the peak tensile or compressive strains that were osteogenic for the proximal cancellous bone under the high load were significantly greater than those that were osteogenic for the midshaft cortical tissues under the low load. These results suggest that the magnitude of the strain stimulus regulating structural, cellular, and molecular responses of bone to loading may be greater for the cancellous tissues than for the cortical tissues. © 2021 The Authors.JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. -
Stabler, Cherie L. (Ed.)
The unavailability of reliable models for studying breast cancer bone metastasis is the major challenge associated with poor prognosis in advanced-stage breast cancer patients. Breast cancer cells tend to preferentially disseminate to bone and colonize within the remodeling bone to cause bone metastasis. To improve the outcome of patients with breast cancer bone metastasis, we have previously developed a 3D in vitro breast cancer bone metastasis model using human mesenchymal stem cells (hMSCs) and primary breast cancer cell lines (MCF-7 and MDAMB231), recapitulating late-stage of breast cancer metastasis to bone. In the present study, we have tested our model using hMSCs and patient-derived breast cancer cell lines (NT013 and NT023) exhibiting different characteristics. We investigated the effect of breast cancer metastasis on bone growth using this 3D in vitro model and compared our results with previous studies. The results showed that NT013 and NT023 cells exhibiting hormone-positive and triple-negative characteristics underwent mesenchymal to epithelial transition (MET) and formed tumors in the presence of bone microenvironment, in line with our previous results with MCF-7 and MDAMB231 cell lines. In addition, the results showed upregulation of Wnt-related genes in hMSCs, cultured in the presence of excessive ET-1 cytokine released by NT013 cells, while downregulation of Wnt-related genes in the presence of excessive DKK-1, released by NT023 cells, leading to stimulation and abrogation of the osteogenic pathway, respectively, ultimately mimicking different types of bone lesions in breast cancer patients.