skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crystal Structure Solution and High Temperature Thermal Expansions of NaZr2(PO4)3-type Materials
The NaZr2P3O12 family of materials have shown low and tailorable thermal expansion properties. In this study, SrZr4P6O24 (SrO 4ZrO2 3P2O5), CaZr4P6O24 (CaO 4ZrO2 3P2O5), MgZr4P6O24 (MgO 4ZrO2 3P2O5), NaTi2P3O12 [1 2(Na2O 4TiO2 3P2O5)], NaZr2P3O12 [1 2(Na2O 4ZrO2 3P2O5)], and related solid solutions were synthesized using the organic–inorganic steric entrapment method. The samples were characterized by in-situ high-temperature X-ray diffraction from 25 to 1500 C at the Advanced Photon Source and National Synchrotron Light Source II. The average linear thermal expansion of SrZr4P6O24 and CaZr4P6O24 was between  1  x 10 -6 per  °C and 6  x 10 -6 per  °C from 25 to 1500 °C. The crystal structures of the high-temperature polymorphs of CaZr4P6O24 and SrZr4P6O24 with R3c symmetry were solved by Fourier difference mapping and Rietveld refinement. This polymorph is present above  1250 °C. This work measured thermal expansion coefficients to 1500 °C for all samples and investigated the differences in thermal expansion mechanisms between polymorphs and between compositions.  more » « less
Award ID(s):
1838595
PAR ID:
10498209
Author(s) / Creator(s):
Editor(s):
Edited by O. V. Yakubovich, Moscow State University
Publisher / Repository:
https://zenodo.org/records/8121949 IUCr publisher
Date Published:
Journal Name:
Acta crystallographica Section B Structural science
Edition / Version:
Acta Crystallographica B
Volume:
B80
Issue:
in press
ISSN:
0108-7681
Page Range / eLocation ID:
1-14 in press
Subject(s) / Keyword(s):
NZP-type materials CaZr4(PO4)6 SrZr4(PO4)6 phase transformation thermal expansion structure solution Fourier difference map powder diffraction.
Format(s):
Medium: X Other: https://zenodo.org/records/8121949
Sponsoring Org:
National Science Foundation
More Like this
  1. Tatsuki Ohji, Ph. D. Editor (Ed.)
    ZrW2O8 (ZrO2•2WO3) and HfW2O8 (HfO2•2WO3) have been the focus of thermal expansion studies due to their isotropic negative thermal expansion (NTE) measured previously at temperatures below 775◦C. This work presents measurements of these materials at their thermodynamically stable temperature ranges of 1105 and 1257◦C for ZrW2O8 and 1105–1276◦C for HfW2O8, where they were characterized with in situ, powder X-ray diffraction. The linear coefficients of thermal expansion were measured to be −5.52 × 10−6 and −4.87 × 10−6◦C−1 for ZrW2O8 and HfW2O8, respectively. The mechanism leading to this NTE is discussed. Powder samples were synthesized by a solution-based process called the organic–inorganic steric entrapment method. In situ characterization in air was carried out at the National Synchrotron Light Source II using a hexapole lamp, optical furnace and theAdvanced Photon Source using a quadrupole lamp, optical furnace to achieve elevated temperatures. 
    more » « less
  2. Abstract Structure and thermodynamics of pure cubic ZrO2and HfO2were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automatedab initiomolecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2and HfO2are similar and reach (4 ± 1)·10−5/K from experiment and (5 ± 1)·10−5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2is an excellent oxygen conductor, perhaps even better than YSZ. 
    more » « less
  3. null (Ed.)
    Iron-rich phyllosilicates on Mars comprise nearly 90% of the H2O- and OH-bearing phases observed directly by rovers and remotely by orbiters (Chemtob et al., 2017, JGR). Theories concerning the possible origin of Fe-rich smectite during Mars’ earliest history (phyllosian) are hard to test because of limited knowledge of the upper-thermal stability of Fe-rich phyllosilicates. In this study we present data on the upper-thermal stability of a pure-iron smectite to put some minimum constraints on its possible high-temperature origin early in Mars history either from a primordial atmosphere or by hydrothermal activity. Smectite coexisting with quartz and magnetite was synthesized from the oxides in the system Na2O-FeO-Fe2O3-Al2O3-SiO2-H2O at 500°C and 2 kbar and fO2 near FMQ. Reversal experiments involved mixtures with equal portions of the smectite-synthesis and breakdown products (quartz, fayalite, albite, magnetite (mt) treated in the presence of about 10 wt% H2O over the range of 1-3 kbar and 530-640°C. The average composition (electron microprobe) of smectite formed both in synthesis and in reversal experiments was Na0.35(Fe2+2.28Fe3+0.31Al0.41)(Al1.07Si2.93)O10(OH)2·nH2O, where ferric iron was calculated by summing the octahedral cations to 3.0. Reversals for the reaction smec+mt1 = fayalite+albite+mt2+quartz+H2O were obtained at 538±8, 590±10, and 610±10°C at 1, 2, and 3 kbar, respectively, where mt1 and mt2 have the approximate compositions Fe2.8Si0.2O4 and Fe2.8Al0.1O4, respectively, with all other phases being pure. This smectite has up to 2 interlayer H2O at 25°C (and high humidity), losing 1 H2O at <50°C, and the second at 125 ± 25°C. Thermodynamic modeling of this reaction was used to extrapolate the upper-thermal stability of this Fe-smectite down to 10 bars and approximately 239°C. Applications of these results indicate the maximum temperature for forming Fe-smectite from a dense primordial atmosphere of 100 bars is 390 ± 25°C. Crustal storage of water in Fe-smectite ranges up to a maximum of 10.7 wt% at ~2 km and 40°C, 7.4 wt% at 6 km and 120°C, and 3.8 wt% H2O at 32 km and 625°C for a Noachian geotherm of 20°C/km. Plain language summary: This study presents experimental limits on the temperatures at which the clay mineral smectite might form on Mars, either from a dense primordial atmosphere (390°C at 100 bars) or by high-temperature hydrothermal activity (625°C at 32 km). Because this study deals with iron end-member clay, these are minimum temperatures; any solid solution with magnesium will increase these temperatures. 
    more » « less
  4. Characterization of the thermal expansion in the rare earth di-titanates is important for their use in high-temperature structural and dielectric applications. Powder samples of the rare earth di-titanates R 2 Ti 2 O 7 (or R 2 O 3 ·2TiO 2 ), where R = La, Pr, Nd, Sm, Gd, Dy, Er, Yb, Y, which crystallize in either the monoclinic or cubic phases, were synthesized for the first time by the solution-based steric entrapment method. The three-dimensional thermal expansions of these polycrystalline powder samples were measured by in situ synchrotron powder diffraction from 25°C to 1600°C in air, nearly 600°C higher than other in situ thermal expansion studies. The high temperatures in synchrotron experiments were achieved with a quadrupole lamp furnace. Neutron powder diffraction measured the monoclinic phases from 25°C to 1150°C. The La 2 Ti 2 O 7 member of the rare earth di-titanates undergoes a monoclinic to orthorhombic displacive transition on heating, as shown by synchrotron diffraction in air at 885°C (864°C–904°C) and neutron diffraction at 874°C (841°C–894°C). 
    more » « less
  5. π-stacking in ground-state dimers/trimers/tetramers ofN-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol−1in strength, drastically surpassing that for the*3[pyrene]2excimer (∼30 kcal ⋅ mol−1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (αa, αb, αc, β) of (452, −16.8, −154, 273) × 10−6⋅ K−1and (70.1, −44.7, 163, 177) × 10−6⋅ K−1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y. 
    more » « less