skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elastic thermobarometry on metapelites across the crustal section of the Famatinian Arc, Argentina
Abstract We applied elastic thermobarometry on garnet-bearing migmatites along two transects through the crustal section at Sierra Valle Fértil-La Huerta, Argentina. We performed quartz-in-garnet barometry and zircon-in-garnet thermometry on metapelites from different paleo-depths across the crustal section. Our work recovers entrapment pressures ranging from 240 to 1330 MPa and entrapment temperatures between 691 and 1574 °C. The entrapment conditions are broadly consistent with anticipated pressures and temperatures along the crustal section derived previously using conventional, thermodynamic thermobarometers. The quartz-in-garnet barometer reproduces those conventionally established entrapment conditions when samples only experienced conditions within the alpha-quartz stability field. Raman-derived pressures for samples that experienced beta-quartz reference conditions are commonly much higher than those established by conventional barometry. Samples that preserve compressive (positive) residual pressures best reproduce reference entrapment pressures. Entrapment temperatures show high variability and overestimation of temperature conditions compared to conventional results. These results indicate elastic thermobarometry over- or under-estimates crystallization conditions in rocks crystallized at high temperatures, as is common in the Famatinian Arc deep-crust. We suggest that modeling quartz behavior across the alpha–beta transition may present challenges, as does shape maturation, viscous deformation, and radiation damage in zircon.  more » « less
Award ID(s):
1941953
PAR ID:
10498276
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Contributions to Mineralogy and Petrology
Volume:
179
Issue:
4
ISSN:
0010-7999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A comparative analysis of Raman shifts of quartz inclusions in garnet was made along two traverses across the Connecticut Valley Trough (CVT) in western New England, USA, to examine the regional trends of quartz inclusion in garnet (QuiG) Raman barometry pressure results and to compare this method with conventional thermobarometry and the method of intersecting garnet core isopleths. Overall, Raman shifts of quartz inclusions ranged from 1·2 to 3·5 cm–1 over all field areas and displayed a south to north decrease, matching the overall decrease in mapped metamorphic grade. Raman shifts of quartz inclusions typically did not show systematic variation with respect to their radial position within a garnet crystal, and indicate that garnet probably grew at nearly isothermal and isobaric pressure–temperature (P–T) conditions. The P–T conditions inferred from conventional thermobarometry were in the range of ∼500–575 °C and ∼7·4–10·3 kbar over the sample suite and are in good agreement with previous published thermobarometry throughout the CVT. These P–T results are broadly consistent with QuiG barometry and also suggest that garnet grew isothermally and isobarically at near peak P–T conditions. However, P–T conditions and P–T paths inferred using either garnet core thermobarometry or garnet core intersecting isopleths yield results that are internally inconsistent and generally disagree with the pressure results from QuiG barometry. Garnet core isopleth intersections consistently plotted between the nominal garnet-in curve on mineral assemblage diagrams and the P–T conditions constrained by QuiG isomekes for the majority of the sample suite. Additionally, most samples’ P–T results from QuiG barometry and rim thermobarometry show marked disagreement from those derived from garnet core thermobarometry, compared with the minority that showed agreement within uncertainty. Pressures calculated from QuiG barometry ranged from 8·5 to 9·5 kbar along the traverses in western Massachusetts (MA) and central Vermont (VT) and from 6·5 to 7·5 kbar in northern VT indicating an increase in peak burial of 3–6 km from north to south. Along the western end of the central VT traverse, there are differences in measured Raman shifts and inferred peak pressures of up to 1 kbar across the Richardson Memorial Contact (RMC), indicating a possible fault contact with minor post-peak metamorphic shortening of up to ∼3 km. In contrast, along an east–west traverse in the vicinity of the Goshen Dome, MA, there was little observed variation in Raman shifts across the contact. By contrast, QuiG barometry clearly indicates significant discontinuities in peak pressure east of the Strafford Dome in central VT. This supports the interpretation that post-peak metamorphic shortening was necessary to juxtapose upper staurolite–kyanite zone rocks next to lower garnet zone pelites. Overall, it is concluded that garnet core thermobarometry and garnet core isopleths may provide unreliable results for the P–T conditions of garnet nucleation and inferred P–T paths during garnet growth unless independently verified. The consistency of QuiG results with rim thermobarometry indicates that peak metamorphic conditions previously reported for the CVT using garnet rim thermobarometry are robust and that variation in QuiG barometry results is a valuable tool to analyze structural features within a metamorphic terrane. 
    more » « less
  2. Abstract Raman spectroscopy is widely used to identify mineral and fluid inclusions in host crystals, as well as to calculate pressure-temperature (P-T) conditions with mineral inclusion elastic thermobarometry, for example quartz-in-garnet barometry (QuiG) and zircon-in-garnet thermometry (ZiG). For thermobarometric applications, P-T precision and accuracy depend crucially on the reproducibility of Raman peak position measurements. In this study, we monitored long-term instrument stability and varied analytical parameters to quantify peak position reproducibility for Raman spectra from quartz and zircon inclusions and reference crystals. Our ultimate goal was to determine the reproducibility of calculated inclusion pressures (“Pinc”) and entrapment pressures (“Ptrap”) or temperatures (“Ttrap”) by quantifying diverse analytical errors, as well as to identify optimal measurement conditions and provide a baseline for interlaboratory comparisons. Most tests emphasized 442 nm (blue) and 532 nm (green) laser sources, although repeated analysis of a quartz inclusion in garnet additionally used a 632.8 nm (red) laser. Power density was varied from <1 to >100 mW and acquisition time from 3 to 270s. A correction is proposed to suppress interference on the ~206 cm–1 peak in quartz spectra by a broad nearby (~220 cm–1) peak in garnet spectra. Rapid peak drift up to 1 cm–1/h occurred after powering the laser source, followed by minimal drift (<0.2 cm–1/h) for several hours thereafter. However, abrupt shifts in peak positions as large as 2–3 cm–1 sometimes occurred within periods of minutes, commonly either positively or negatively correlated to changes in room temperature. An external Hg-emission line (fluorescent light) can be observed in spectra collected with the green laser and shows highly correlated but attenuated directional shifts compared to quartz and zircon peaks. Varying power density and acquisition time did not affect Raman peak positions of either quartz or zircon grains, possibly because power densities at the levels of inclusions were low. However, some zircon inclusions were damaged at higher power levels of the blue laser source, likely because of laser-induced heating. Using a combination of 1, 2, or 3 peak positions for the ~128, ~206, and ~464 cm–1 peaks in quartz to calculate Pinc and Ptrap showed that use of the blue laser source results in the most reproducible Ptrap values for all methods (0.59 to 0.68 GPa at an assumed temperature of 450 °C), with precisions for a single method as small as ±0.03 GPa (2σ). Using the green and red lasers, some methods of calculating Ptrap produce nearly identical estimates as the blue laser with similarly good precision (±0.02 GPa for green laser, ±0.03 GPa for red laser). However, using 1- and 2-peak methods to calculate Ptrap can yield values that range from 0.52 ± 0.06 to 0.93 ± 0.16 GPa for the green laser, and 0.53 ± 0.08 GPa to 1.00 ± 0.45 GPa for the red laser. Semiquantitative calculations for zircon, assuming a typical error of ±0.25 cm–1 in the position of the ~1008 cm–1 peak, imply reproducibility in temperature (at an assumed pressure) of approximately ±65 °C. For optimal applications to elastic thermobarometry, analysts should: (1) delay data collection approximately one hour after laser startup, or leave lasers on; (2) collect a Hg-emission line simultaneously with Raman spectra when using a green laser to correct for externally induced shifts in peak positions; (3) correct for garnet interference on the quartz 206 cm–1 peak; and either (4a) use a short wavelength (blue) laser for quartz and zircon crystals for P-T calculations, but use very low-laser power (<12 mW) to avoid overheating and damage or (4b) use either the intermediate wavelength (green; quartz and zircon) or long wavelength (red; zircon) laser for P-T calculations, but restrict calculations to specific methods. Implementation of our recommendations should optimize reproducibility for elastic geothermobarometry, especially QuiG barometry and ZiG thermometry. 
    more » « less
  3. Abstract Current models for elastic geobarometry have been developed with the assumption that the host and/or inclusion minerals are elastically isotropic. This assumption has limited applications of elastic thermobarometry to mineral inclusions contained in cubic quasi‐isotropic host minerals (e.g., garnet). Here, we report a new elastic model that takes into account the anisotropic elastic properties and relative crystallographic orientation (RCO) of a host‐inclusion system where both minerals are noncubic. This anisotropic elastic model can be used for host‐inclusion elastic thermobarometric calculations provided that the RCO and elastic properties of both the host and inclusion are known. We then used this anisotropic elastic model to numerically evaluate the effects of elastic anisotropy and RCO on the strains and stresses developed in a quartz inclusion entrapped in a zircon host after exhumation from known entrapmentP‐Tconditions to roomP‐Tconditions. We conclude that the anisotropic quartz‐in‐zircon elastic model is suitable for elastic thermobarometry and may be widely applicable to crustal rocks. Our results demonstrate that isotropic elastic models cannot be used to determine the entire strain state of an elastically anisotropic inclusion contained in an elastically anisotropic host mineral, and therefore may lead to errors on estimated remnant inclusion pressures. 
    more » « less
  4. Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes. 
    more » « less
  5. Abstract Ultrahigh‐temperature (UHT; >900°C) metamorphism drives crustal differentiation and is widely recognized in the rock record, but its geodynamic causes are debated. Previous work on granulite‐facies metapelite xenoliths from San Luis Potosí, Mexico suggests the lower crust experienced a protracted UHT metamorphic event that coincided with the onset of regional extension. To determine the duration, conditions, and heat sources of UHT metamorphism recorded by these xenoliths, this study characterizes the major‐element, trace‐element, and U‐Pb isotopic systematics of quartz, rutile, feldspar, garnet, and zircon by in situ electron microprobe (EPMA) and laser‐ablation inductively coupled‐plasma mass spectrometry (LA‐ICP‐MS), and augments these data with detailed petrography, thermobarometry, phase equilibria modeling, and diffusion modeling. Thermobarometry and phase equilibria modeling suggest peak metamorphic conditions exceeded 0.7 GPa and 900°C. Zircon petrochronology confirms >15 Myr of UHT conditions since its onset at ∼30 Ma. A small population of zircon record elevated temperatures following transition from backarc compression to extension during the waning stages of orogenesis (60–37 Ma). Garnet preserves trace‐element zoning and mineral inclusions consistent with suprasolidus garnet growth and subsequent compositional modification by intracrystalline rare‐earth element diffusion during protracted heating, with diffusion chronometry timescales in agreement with zircon data, followed by fluid‐driven remobilization of trace elements along now‐healed fractures within ∼1 Myr of eruption. In sum, these data are most compatible with lithospheric mantle attenuation or removal as the dominant heat transport mechanism driving synextensional UHT metamorphism and crustal melting, which has bearing on models for crustal differentiation and formation of modern and ancient granulite terranes globally. 
    more » « less