skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Young Mathematicians Take Action Through Sport Clinics
A community-based mathematical modeling task focuses on exploring issues of inequities and lack of access to youth sports.  more » « less
Award ID(s):
2010202
PAR ID:
10498532
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The National Council of Teachers of Mathematics
Date Published:
Journal Name:
Mathematics Teacher: Learning and Teaching PK-12
Volume:
116
Issue:
11
ISSN:
0025-5769
Page Range / eLocation ID:
845 to 855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This Account summarizes efforts in our group toward synthesis of heterocycles in the past decade. Selected examples of transannulative heterocyclizations, intermediate construction of reactive compounds en route to these important motifs, and newer developments of a radical approach are outlined. 1 Introduction 2 Transannulative Heterocyclization 2.1 Rhodium-Catalyzed Transannulative Heterocyclization 2.2 Copper-Catalyzed Transannulative Heterocyclization 3 Synthesis of Heterocycles from Reactive Precursors 3.1 Synthesis of Heterocycles from Diazo Compounds 3.2 Synthesis of Heterocycles from Alkynones 4 Radical Heterocyclization 4.1 Light-Induced Radical Heterocyclization 4.2 Light-Free Radical Heterocyclization 7 Conclusion 
    more » « less
  2. All the names in Paronychia described from South America are investigated. Five names (P. arbuscula, P. brasiliana subsp. brasiliana var. pubescens, P. coquimbensis, P. hieronymi, and P. mandoniana) are lecto- or neotypified on specimens preserved at GOET, K, LP, and P. The typification of nine names, first proposed by Chaudhri in 1968 as the “holotype” are corrected according to Art. 9.10 of ICN. Three second-step typifications (Art. 9.17 of ICN) are proposed for P. camphorosmoides, P. communis, and P. hartwegiana. The following nomenclatural changes are proposed: P. arequipensis comb. et stat. nov. (basionym: P. microphylla subsp. microphylla var. arequepensis), P. compacta nom. nov. pro P. andina (Philippi non Gray; Art. 53.1 of ICN), P. jujuyensis comb. et stat. nov. (basionym: P. hieronymi subsp. hieronymi var. jujuyensis), P. compacta subsp. boliviana comb. nov. (basionym: P. andina subsp. boliviana), and P. compacta subsp. purpurea comb. nov. (basionym: P. andina subsp. purpurea). A new species (P. glabra sp. nov.) is proposed based on our examination of live plants and herbarium specimens. P. johnstonii subsp. johnstonii var. scabrida is synonymized (syn. nov.) with P. johnstonii. Finally, P. argyrocoma subsp. argyrocoma is excluded from South America since it was based on misidentified specimens (deposited at MO) of P. andina subsp. andina. A total of 30 species (43 taxa including subspecies, varieties, subvarieties, and forms) are recognized, highlighting that for some (Paronychia chilensis, P. communis, P. setigera) we provisionally accept Chaudhri’s infraspecific classification, since the high phenotypic variability of these taxa is quite complicated and further investigations need to solve their taxonomy. 
    more » « less
  3. Abstract FlyBase (www.flybase.org) is the primary online database of genetic, genomic, and functional information aboutDrosophila melanogaster. The long and rich history ofDrosophilaresearch, combined with recent surges in genomic‐scale and high‐throughput technologies, means that FlyBase now houses a huge quantity of data. Researchers need to be able to query these data rapidly and intuitively, and the QuickSearch tool has been designed to meet these needs. This tool is conveniently located on the FlyBase homepage and is organized into a series of simple tabbed interfaces that cover the major data and annotation classes within the database. This article describes the functionality of all aspects of the QuickSearch tool. With this knowledge, FlyBase users will be equipped to take full advantage of all QuickSearch features and thereby gain improved access to data relevant to their research. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Using the “Search FlyBase” tab of QuickSearch Basic Protocol 2: Using the “Data Class” tab of QuickSearch Basic Protocol 3: Using the “References” tab of QuickSearch Basic Protocol 4: Using the “Gene Groups” tab of QuickSearch Basic Protocol 5: Using the “Pathways” tab of QuickSearch Basic Protocol 6: Using the “GO” tab of QuickSearch Basic Protocol 7: Using the “Protein Domains” tab of QuickSearch Basic Protocol 8: Using the “Expression” tab of QuickSearch Basic Protocol 9: Using the “GAL4 etc” tab of QuickSearch Basic Protocol 10: Using the “Phenotype” tab of QuickSearch Basic Protocol 11: Using the “Human Disease” tab of QuickSearch Basic Protocol 12: Using the “Homologs” tab of QuickSearch Support Protocol 1: Managing FlyBase hit lists 
    more » « less
  4. Abstract Dual light-excited ketone/transition-metal catalysis is a rapidly developing field of photochemistry. It allows for versatile functionalizations of C–H or C–X bonds enabled by triplet ketone acting as a hydrogen-atom-abstracting agent, a single-electron acceptor, or a photosensitizer. This review summarizes recent developments of synthetically useful transformations promoted by the synergy between triplet ketone and transition-metal catalysis. 1 Introduction 2 Triplet Ketone Catalysis via Hydrogen Atom Transfer 2.1 Triplet Ketones with Nickel Catalysis 2.2 Triplet Ketones with Copper Catalysis 2.3 Triplet Ketones with Other Transition-Metal Catalysis 3 Triplet Ketone Catalysis via Single-Electron Transfer 4 Triplet Ketone Catalysis via Energy Transfer 5 Conclusions 
    more » « less
  5. Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å. 
    more » « less