skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances in Selected Heterocyclization Methods
Abstract This Account summarizes efforts in our group toward synthesis of heterocycles in the past decade. Selected examples of transannulative heterocyclizations, intermediate construction of reactive compounds en route to these important motifs, and newer developments of a radical approach are outlined. 1 Introduction 2 Transannulative Heterocyclization 2.1 Rhodium-Catalyzed Transannulative Heterocyclization 2.2 Copper-Catalyzed Transannulative Heterocyclization 3 Synthesis of Heterocycles from Reactive Precursors 3.1 Synthesis of Heterocycles from Diazo Compounds 3.2 Synthesis of Heterocycles from Alkynones 4 Radical Heterocyclization 4.1 Light-Induced Radical Heterocyclization 4.2 Light-Free Radical Heterocyclization 7 Conclusion  more » « less
Award ID(s):
1955663
PAR ID:
10473948
Author(s) / Creator(s):
;
Publisher / Repository:
Thieme
Date Published:
Journal Name:
Synlett
Volume:
34
Issue:
13
ISSN:
0936-5214
Page Range / eLocation ID:
1554 to 1562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A Pd‐catalyzed heterocyclization/carbonylation/arylation cascade reaction between β,γ‐unsaturated N−Ts hydrazones and commercially available arylboronic acids as coupling partners is described, producing 2‐pyrazoline‐ketone derivatives in 11–78% yield. A detailed statistical analysis of reactivity patterns of boronic acids provided key information about the limitations of the method, highlighting the challenges of degradation pathways. Our methodology offers a tool for synthesizing diverse 2‐pyrazoline‐ketone derivatives, expanding the toolbox of accessible N−N‐heterocycles. 
    more » « less
  2. Transition metal–catalyzed cross-coupling reactions are some of the most widely used methods in chemical synthesis. However, despite notable advantages of iron (Fe) as a potentially cheaper, more abundant, and less toxic transition metal catalyst, its practical application in multicomponent cross-couplings remains largely unsuccessful. We demonstrate 1,2-bis(dicyclohexylphosphino)ethane Fe–catalyzed coupling of α-boryl radicals (generated from selective radical addition to vinyl boronates) with Grignard reagents. Then, we extended the scope of these radical cascades by developing a general and broadly applicable Fe-catalyzed multicomponent annulation–cross-coupling protocol that engages a wide range of π-systems and permits the practical synthesis of cyclic fluorous compounds. Mechanistic studies are consistent with a bisarylated Fe(II) species being responsible for alkyl radical generation to initiate catalysis, while carbon-carbon bond formation proceeds between a monoarylated Fe(II) center and a transient alkyl radical. 
    more » « less
  3. Abstract A mild visible light‐induced palladium‐catalyzed alkyl Heck reaction of diazo compounds andN‐tosylhydrazones is reported. A broad range of vinyl arenes and heteroarenes with high functional group tolerance, as well as a range of different diazo compounds, can efficiently undergo this transformation. This method features Brønsted acid‐assisted generation of hybrid palladium C(sp3)‐centered radical intermediate, which allowed for new selective C−H functionalization protocol. 
    more » « less
  4. Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism. 
    more » « less
  5. Carbon–carbon bond formation is one of the most important tools in synthetic organic chemists’ toolbox. It is a fundamental transformation that allows synthetic chemists to synthesize the carbon framework of complex molecules from inexpensive simple starting materials. Among the many synthetic methodologies developed for the construction of carbon–carbon bonds, organocopper reagents are one of the most reliable organometallic reagents for this purpose. The versatility of organocuprate reagents or the reactions catalyzed by organocopper reagents were demonstrated by their applications in a variety of synthetic transformations including the 1,4-conjugate addition reactions. Sulfur-containing heterocyclic compounds are a much less studied area compared to oxygen-containing heterocycles but have gained more and more attention in recent years due to their rich biological activities and widespread applications in pharmaceuticals, agrochemicals, and material science. This paper will provide a brief review on recent progress on the synthesis of an important class of sulfur-heterocycles-2-alkylthiochroman-4-ones and thioflavanones via the conjugate additions of Grignard reagents to thiochromones catalyzed by copper catalysts. Recent progress on the synthesis of 2-substituted thiochroman-4-ones via alkynylation and alkenylation of thiochromones will also be covered in this review. 
    more » « less