skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Thinking During a Short, Authentic, Interdisciplinary STEM Experience for Elementary Students
Abstract STEM experiences that capture students’ curiosity have a unique role in inspiring awe in science, enculturing science engagement, and recruiting students to pursue STEM careers. Here, we present a unique interdisciplinary STEM experience for elementary school students that teaches them to write computer code to test primate intelligence at a zoo where they test their code with real monkeys. In a pilot study involving 3rd to 6th grade students, we find that students can acquire “hard skills” in computational thinking during this short-term immersive STEM experience, with a significant increase in accuracy and problem-solving attempts at post-test. Furthermore, students’ interests in animal science, computers, and robots remain stable or even increase following this experience, demonstrating the project’s capacity to blend technical skills with authentic scientific exploration. Teachers’ feedback highlights the positive impact on critical thinking and leadership. This research underscores the potential of free-form, authentic, interdisciplinary STEM experiences to simultaneously nurture computational skills and a passion for science.  more » « less
Award ID(s):
2148343
PAR ID:
10498604
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal for STEM Education Research
Volume:
7
Issue:
3
ISSN:
2520-8705
Format(s):
Medium: X Size: p. 425-443
Size(s):
p. 425-443
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have seen growing awareness of the potential digital storytelling brings to creating engaging K-12 learning experiences. By fostering students’ interdisciplinary knowledge and skills, digital storytelling holds great promise for realizing positive impacts on student learning in language arts as well as STEM subjects. In parallel, researchers and practitioners increasingly acknowledge the importance of computational thinking in supporting K-12 students’ problem solving across subjects and grade levels, including science and elementary school. Integrating the unique affordances of digital storytelling and computational thinking offers significant potential; however, careful attention must be given to ensure students and teachers are properly supported and not overwhelmed. In this paper, we present our work on a narrative-centered learning environment that engages upper elementary students (ages 9 to 11) in computational thinking and physical science through the creation of interactive science narratives. Leveraging log data from a pilot study with 28 students using the learning environment, we analyze the narrative programs students created across multiple dimensions to better understand the nature of the resulting narratives. Furthermore, we examine automating this analysis using artificial intelligence techniques to support real-time adaptive feedback. Results indicate that the learning environment enabled students to create interactive digital stories demonstrating their understanding of physical science, computational thinking, and narrative concepts, while the automated assessment techniques showed promise for enabling real-time feedback and support. 
    more » « less
  2. Computational models (CMs) offer pre-college students opportunities to integrate STEM disciplines with computational thinking (CT) in ways that reflect authentic STEM practice. However, not all STEM teachers and students are prepared to teach or learn programming skills required to construct CMs. To help broaden participation in computing and reduce the potentially prohibitive demands of learning programming, we propose alternate versions of computational modeling that require low or no programming. These versions rely on code comprehension and evaluation of given code and simulations instead of code creation. We present results from a pilot study that explores student engagement with CT practices and student challenges in three types of computational modeling activities. 
    more » « less
  3. As Computer science (CS) plays an increasingly significant role in many other disciplines, it is crucial for us as CS educators to create authentic interdisciplinary learning experiences for students. To better inform the design of such learning experiences, we sought to catalogue how faculty from both CS and other disciplines are currently collaborating to create such experiences. Specifically, this paper describes knowledge-seeking activities carried out through designing and implementing a workshop program that brought together twenty-four faculty with experience in partnered teaching of CS+X courses. The goal is to take the initial steps towards preparing and supporting CS faculty to create interdisciplinary CS+X courses through partnerships with faculty in other disciplines, in order to spur interdisciplinary thinking in students. 
    more » « less
  4. Banu, Eliza A. (Ed.)
    Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was moderately successful. Overall, these results highlight the need to make extracurricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM. 
    more » « less
  5. null (Ed.)
    Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was only moderately successful, highlighting the need to make extra-curricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM. 
    more » « less