skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2148343

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Early mathematical development is thought to depend on visuospatial processing, yet neural evidence for this relationship in young children has been limited. We examined the neural mechanisms supporting numerical and visuospatial processing in 4- to 8-year-old children and adults using functional magnetic resonance imaging (fMRI), with three tasks: numerical matching, geometric shape matching, and number line estimation. We found that specialization for numerical and geometric processing in parietal cortex exists by 4–8 years of age, and that children exhibited greater conjunctive activation between numerical and geometric tasks throughout the parietal cortex compared to adults. During the number line task, children’s neural activity significantly overlapped with activity from both number and geometric shape matching tasks, whereas adults’ activity only overlapped with the number task. These findings provide the first neural evidence that number line estimation relies on both numerical and geometric processing in children, whereas it depends primarily on number-specific processing in adults. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract STEM experiences that capture students’ curiosity have a unique role in inspiring awe in science, enculturing science engagement, and recruiting students to pursue STEM careers. Here, we present a unique interdisciplinary STEM experience for elementary school students that teaches them to write computer code to test primate intelligence at a zoo where they test their code with real monkeys. In a pilot study involving 3rd to 6th grade students, we find that students can acquire “hard skills” in computational thinking during this short-term immersive STEM experience, with a significant increase in accuracy and problem-solving attempts at post-test. Furthermore, students’ interests in animal science, computers, and robots remain stable or even increase following this experience, demonstrating the project’s capacity to blend technical skills with authentic scientific exploration. Teachers’ feedback highlights the positive impact on critical thinking and leadership. This research underscores the potential of free-form, authentic, interdisciplinary STEM experiences to simultaneously nurture computational skills and a passion for science. 
    more » « less