skip to main content


Title: Young Star Clusters Dominate the Production of Detached Black Hole–Star Binaries
Abstract

The recent discovery of two detached black hole–star (BH–star) binaries from Gaia’s third data release has sparked interest in understanding the formation mechanisms of these systems. We investigate the formation of these systems by dynamical processes in young star clusters (SCs) and via isolated binary (IB) evolution, using a combination of directN-body and population synthesis simulations. We find that dynamical formation in SCs is nearly 50 times more efficient per unit of star formation at producing BH–star binaries than IB evolution. We expand this analysis to the full Milky Way (MW) using a FIRE-2 hydrodynamical simulation of an MW-mass galaxy. Even assuming that only 10% of star formation goes into SCs, we find that approximately four out of every five BH–star systems are formed dynamically, and that the MW contains a total of ∼2 × 105BH–star systems. Many of these dynamically formed systems have longer orbital periods, greater eccentricities, and greater black hole masses than their isolated counterparts. For binaries older than 100 Myr, we show that any detectable system withe≳ 0.5 orMBH≳ 10Mcanonlybe formed through dynamical processes. Our MW model predicts between 64 and 215 such detections from the complete DR4 Gaia catalog, with the majority of systems being dynamically formed in massive and metal-rich SCs. Finally, we compare our populations to the recently discovered Gaia BH1 and Gaia BH2, and conclude that the dynamical scenario is the most favorable formation pathway for both systems.

 
more » « less
NSF-PAR ID:
10498623
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 22
Size(s):
["Article No. 22"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present high-precision radial velocity observations of Gaia BH1, the nearest known black hole (BH). The system contains a solar-type G star orbiting a massive dark companion, which could be either a single BH or an inner BH + BH binary. A BH + BH binary is expected in some models where Gaia BH1 formed as a hierarchical triple, which is attractive because they avoid many of the difficulties associated with forming the system through isolated binary evolution. Our observations test the inner binary scenario. We have measured 115 precise RVs of the G star, including 40 from ESPRESSO with a precision of 3–5 m s−1, and 75 from other instruments with a typical precision of 30–100 m s−1. Our observations span 2.33 orbits of the G star and are concentrated near a periastron passage, when perturbations due to an inner binary would be largest. The RVs are well-fit by a Keplerian two-body orbit and show no convincing evidence of an inner binary. UsingREBOUNDsimulations of hierarchical triples with a range of inner periods, mass ratios, eccentricities, and orientations, we show that plausible inner binaries with periodsPinner≳ 1.5 days would have produced larger deviations from a Keplerian orbit than observed. Binaries withPinner≲ 1.5 days are consistent with the data, but these would merge within a Hubble time and would thus imply fine-tuning. We present updated parameters of Gaia BH1's orbit. The RVs yield a spectroscopic mass functionfMBH=3.9358±0.0002M—about 7000σabove the ∼2.5Mmaximum neutron star mass. Including the inclination constraint from Gaia astrometry, this implies a BH mass ofMBH= 9.27 ± 0.10M.

     
    more » « less
  2. ABSTRACT

    We report discovery of a bright, nearby ($G = 13.8;\, \, d = 480\, \rm pc$) Sun-like star orbiting a dark object. We identified the system as a black hole candidate via its astrometric orbital solution from the Gaia mission. Radial velocities validated and refined the Gaia solution, and spectroscopy ruled out significant light contributions from another star. Joint modelling of radial velocities and astrometry constrains the companion mass of $M_2 = 9.62\pm 0.18\, \mathrm{M}_{\odot }$. The spectroscopic orbit alone sets a minimum companion mass of $M_2\gt 5\, \mathrm{M}_{\odot }$; if the companion were a $5\, \mathrm{M}_{\odot }$ star, it would be 500 times more luminous than the entire system. These constraints are insensitive to the mass of the luminous star, which appears as a slowly rotating G dwarf ($T_{\rm eff}=5850\, \rm K$, log g = 4.5, $M=0.93\, \mathrm{M}_{\odot }$), with near-solar metallicity ($\rm [Fe/H] = -0.2$) and an unremarkable abundance pattern. We find no plausible astrophysical scenario that can explain the orbit and does not involve a black hole. The orbital period, Porb = 185.6 d, is longer than that of any known stellar-mass black hole binary. The system’s modest eccentricity (e = 0.45), high metallicity, and thin-disc Galactic orbit suggest that it was born in the Milky Way disc with at most a weak natal kick. How the system formed is uncertain. Common envelope evolution can only produce the system’s wide orbit under extreme and likely unphysical assumptions. Formation models involving triples or dynamical assembly in an open cluster may be more promising. This is the nearest known black hole by a factor of 3, and its discovery suggests the existence of a sizable population of dormant black holes in binaries. Future Gaia releases will likely facilitate the discovery of dozens more.

     
    more » « less
  3. Abstract

    Quenching of star formation in the central galaxies of cosmological halos is thought to result from energy released as gas accretes onto a supermassive black hole. The same energy source also appears to lower the central density and raise the cooling time of baryonic atmospheres in massive halos, thereby limiting both star formation and black hole growth, by lifting the baryons in those halos to greater altitudes. One predicted signature of that feedback mechanism is a nearly linear relationship between the central black hole’s mass (MBH) and the original binding energy of the halo’s baryons. We present the increasingly strong observational evidence supporting a such a relationship, showing that it extends up to halos of massMhalo∼ 1014M. We then compare current observational constraints on theMBHMhalorelation with numerical simulations, finding that black hole masses in IllustrisTNG appear to exceed those constraints atMhalo< 1013Mand that black hole masses in EAGLE fall short of observations atMhalo∼ 1014M. A closer look at IllustrisTNG shows that quenching of star formation and suppression of black hole growth do indeed coincide with black hole energy input that lifts the halo’s baryons. However, IllustrisTNG does not reproduce the observedMBHMhalorelation because its black holes gain mass primarily through accretion that does not contribute to baryon lifting. We suggest adjustments to some of the parameters in the IllustrisTNG feedback algorithm that may allow the resulting black hole masses to reflect the inherent links between black hole growth, baryon lifting, and star formation among the massive galaxies in those simulations.

     
    more » « less
  4. Abstract

    Gravitational-wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate,RBBH(z). We make predictions forRBBH(z) as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synthesis simulations,COMPAS. We distinguish two channels: the common envelope (CE), and the stable Roche-lobe overflow (RLOF) channel, characterized by whether the system has experienced a common envelope or not. We find that the CE channel preferentially produces BHs with masses below about 30Mand short delay times (tdelay≲ 1 Gyr), while the stable RLOF channel primarily forms systems with BH masses above 30Mand long delay times (tdelay≳ 1 Gyr). We provide a new fit for the metallicity-dependent specific star formation rate density based on the Illustris TNG simulations, and use this to convert the delay time distributions into a prediction ofRBBH(z). This leads to a distinct redshift evolution ofRBBH(z) for high and low primary BH masses. We furthermore find that, at high redshift,RBBH(z) is dominated by the CE channel, while at low redshift, it contains a large contribution (∼40%) from the stable RLOF channel. Our results predict that, for increasing redshifts, BBHs with component masses above 30Mwill become increasingly scarce relative to less massive BBH systems. Evidence of this distinct evolution ofRBBH(z) for different BH masses can be tested with future detectors.

     
    more » « less
  5. ABSTRACT

    Multibody dynamical interactions of binaries with other objects are one of the main driving mechanisms for the evolution of star clusters. It is thus important to bring our understanding of three-body interactions beyond the commonly employed point-particle approximation. To this end, we here investigate the hydrodynamics of three-body encounters between star–black hole (BH) binaries and single stars, focusing on the identification of final outcomes and their long-term evolution and observational properties, using the moving-mesh hydrodynamics code AREPO. This type of encounter produces five types of outcomes: stellar disruption, stellar collision, weak perturbation of the original binary, binary member exchange, and triple formation. The two decisive parameters are the binary phase angle, which determines which two objects meet at the first closest approach, and the impact parameter, which sets the boundary between violent and non-violent interactions. When the impact parameter is smaller than the semimajor axis of the binary, tidal disruptions and star-BH collisions frequently occur when the BH and the incoming star first meet, while the two stars mostly merge when the two stars meet first instead. In both cases, the BHs accrete from an accretion disc at super-Eddington rates, possibly generating flares luminous enough to be observed. The stellar collision products either form a binary with the BH or remain unbound to the BH. Upon collision, the merged stars are hotter and larger than the main sequence stars of the same mass at similar age. Even after recovering their thermal equilibrium state, stellar collision products, if isolated, would remain hotter and brighter than main sequence stars until becoming giants.

     
    more » « less