Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106M⊙have escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M⊙, with spins set by the details of the growth history. BHs up to about 150M⊙can reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems.
more »
« less
The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter
Abstract Gravitational-wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate,RBBH(z). We make predictions forRBBH(z) as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synthesis simulations,COMPAS. We distinguish two channels: the common envelope (CE), and the stable Roche-lobe overflow (RLOF) channel, characterized by whether the system has experienced a common envelope or not. We find that the CE channel preferentially produces BHs with masses below about 30M⊙and short delay times (tdelay≲ 1 Gyr), while the stable RLOF channel primarily forms systems with BH masses above 30M⊙and long delay times (tdelay≳ 1 Gyr). We provide a new fit for the metallicity-dependent specific star formation rate density based on the Illustris TNG simulations, and use this to convert the delay time distributions into a prediction ofRBBH(z). This leads to a distinct redshift evolution ofRBBH(z) for high and low primary BH masses. We furthermore find that, at high redshift,RBBH(z) is dominated by the CE channel, while at low redshift, it contains a large contribution (∼40%) from the stable RLOF channel. Our results predict that, for increasing redshifts, BBHs with component masses above 30M⊙will become increasingly scarce relative to less massive BBH systems. Evidence of this distinct evolution ofRBBH(z) for different BH masses can be tested with future detectors.
more »
« less
- Award ID(s):
- 2009131
- PAR ID:
- 10367221
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 931
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 17
- Size(s):
- Article No. 17
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The formation histories of compact binary mergers, especially stellar-mass binary black hole mergers, have recently come under increased scrutiny and revision. We revisit the question of the dominant formation channel and efficiency of forming binary neutron star (BNS) mergers. We use the stellar and binary evolution codeMESAand implement a detailed method for common envelope and mass transfer. We perform simulations for donor masses between 7 M⊙and 20 M⊙with a neutron star (NS) companion of 1.4 M⊙and 2.0 M⊙ at two metallicities, using varying common envelope efficiencies and two different prescriptions to determine if the donor undergoes core collapse or electron capture, given their helium and carbon–oxygen cores. In contrast to the case of binary black hole mergers, for an NS companion of 1.4 M⊙, all BNS mergers are formed following a common envelope phase. For an NS mass of 2.0 M⊙, we identify a small subset of mergers following only stable mass transfer if the NS receives a natal kick sampled from a Maxwellian distribution with velocity dispersionσ= 265 km s−1. Regardless of the supernova prescription, we find more BNS mergers at subsolar metallicity compared to solar.more » « less
-
Abstract Gravitational-wave (GW) detectors are observing compact object mergers from increasingly far distances, revealing the redshift evolution of the binary black hole (BBH)—and soon the black hole–neutron star (BHNS) and binary neutron star (BNS)—merger rate. To help interpret these observations, we investigate the expected redshift evolution of the compact object merger rate from the isolated binary evolution channel. We present a publicly available catalog of compact object mergers and their accompanying cosmological merger rates from population synthesis simulations conducted with the COMPAS software. To explore the impact of uncertainties in stellar and binary evolution, our simulations use two-parameter grids of binary evolution models that vary the common-envelope efficiency with mass transfer accretion efficiency and supernova (SN) remnant mass prescription with SN natal kick velocity, respectively. We quantify the redshift evolution of our simulated merger rates using the local (z∼ 0) rate, the redshift at which the merger rate peaks, and the normalized differential rates (as a proxy for slope). We find that although the local rates span a range of ∼103across our model variations, their redshift evolutions are remarkably similar for BBHs, BHNSs, and BNSs, with differentials typically within a factor 3 and peaks ofz≈ 1.2–2.4 across models. Furthermore, several trends in our simulated rates are correlated with the model parameters we explore. We conclude that future observations of the redshift evolution of the compact object merger rate can help constrain binary models for stellar evolution and GW formation channels.more » « less
-
Abstract The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshiftsz≳ 30, where the formation of astrophysical black holes is unlikely. Future ground-based GW detectors, the Cosmic Explorer and Einstein Telescope, will be able to observe equal-mass BBH mergers with total mass of at such distances. In this work, we investigate whether the redshift measurement of a single BBH source can be precise enough to establish its primordial origin. We simulate BBHs of different masses, mass ratios and orbital orientations. We show that for BBHs with total masses between 20M⊙and 40M⊙merging atz≥ 40, one can inferz> 30 at up to 97% credibility, with a network of one Einstein Telescope, one 40 km Cosmic Explorer in the US, and one 20 km Cosmic Explorer in Australia. This number reduces to 94% with a smaller network made of one Einstein Telescope and one 40 km Cosmic Explorer in the US. We also analyze how the measurement depends on the Bayesian priors used in the analysis and verify that priors that strongly favor the wrong model yield smaller Bayesian evidences.more » « less
-
Abstract Supermassive black holes (SMBHs) can grow through both accretion and mergers. It is still unclear how SMBHs evolve under these two channels from high redshifts to the SMBH population we observe in the local Universe. Observations can directly constrain the accretion channel but cannot effectively constrain mergers yet, while cosmological simulations provide galaxy merger information but can hardly return accretion properties consistent with observations. In this work, we combine the observed accretion channel and the simulated merger channel, taking advantage of observations and cosmological simulations, to depict a realistic evolution pattern of the SMBH population. With this methodology, we can derive the scaling relation between the black hole mass (MBH) and host-galaxy stellar mass (M⋆), and the local black hole mass function (BHMF). Our scaling relation is lower than those based on dynamically measuredMBH, supporting the claim that dynamically measured SMBH samples may be biased. We show that the scaling relation has little redshift evolution. The BHMF steadily increases fromz= 4 toz= 1 and remains largely unchanged fromz= 1 toz= 0. The overall SMBH growth is generally dominated by the accretion channel, with possible exceptions at high mass (MBH≳ 108M⊙orM⋆≳ 1011M⊙) and low redshift (z≲ 1). We also predict that around 25% of the total SMBH mass budget in the local Universe may be locked within long-lived, wandering SMBHs, and the wandering mass fraction and wandering SMBH counts increase withM⋆.more » « less
An official website of the United States government
