- Award ID(s):
- 2022981
- PAR ID:
- 10498670
- Publisher / Repository:
- International Journal of Intelligent Systems and Applications in Engineering, Vol.10 No.3 (2022)
- Date Published:
- Journal Name:
- International journal of intelligent systems and applications in engineering
- ISSN:
- 2147-6799
- Subject(s) / Keyword(s):
- Keywords:Heart disease prediction, Deep Residual Network (DRN), Ensemble classifiers, coronary artery disease.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Background The United States, and especially West Virginia, have a tremendous burden of coronary artery disease (CAD). Undiagnosed familial hypercholesterolemia (FH) is an important factor for CAD in the U.S. Identification of a CAD phenotype is an initial step to find families with FH. Objective We hypothesized that a CAD phenotype detection algorithm that uses discrete data elements from electronic health records (EHRs) can be validated from EHR information housed in a data repository. Methods We developed an algorithm to detect a CAD phenotype which searched through discrete data elements, such as diagnosis, problem lists, medical history, billing, and procedure (International Classification of Diseases [ICD]-9/10 and Current Procedural Terminology [CPT]) codes. The algorithm was applied to two cohorts of 500 patients, each with varying characteristics. The second (younger) cohort consisted of parents from a school child screening program. We then determined which patients had CAD by systematic, blinded review of EHRs. Following this, we revised the algorithm by refining the acceptable diagnoses and procedures. We ran the second algorithm on the same cohorts and determined the accuracy of the modification. Results CAD phenotype Algorithm I was 89.6% accurate, 94.6% sensitive, and 85.6% specific for group 1. After revising the algorithm (denoted CAD Algorithm II) and applying it to the same groups 1 and 2, sensitivity 98.2%, specificity 87.8%, and accuracy 92.4; accuracy 93% for group 2. Group 1 F1 score was 92.4%. Specific ICD-10 and CPT codes such as “coronary angiography through a vein graft” were more useful than generic terms. Conclusion We have created an algorithm, CAD Algorithm II, that detects CAD on a large scale with high accuracy and sensitivity (recall). It has proven useful among varied patient populations. Use of this algorithm can extend to monitor a registry of patients in an EHR and/or to identify a group such as those with likely FH.more » « less
-
The global rise in heart disease necessitates precise prediction tools to assess individual risk levels. This paper introduces a novel Multi-Objective Artificial Bee Colony Optimized Hybrid Deep Belief Network and XGBoost (HDBN-XG) algorithm, enhancing coronary heart disease prediction accuracy. Key physiological data, including Electrocardiogram (ECG) readings and blood volume measurements, are analyzed. The HDBN-XG algorithm assesses data quality, normalizes using z-score values, extracts features via the Computational Rough Set method, and constructs feature subsets using the Multi-Objective Artificial Bee Colony approach. Our findings indicate that the HDBN-XG algorithm achieves an accuracy of 99%, precision of 95%, specificity of 98%, sensitivity of 97%, and F1-measure of 96%, outperforming existing classifiers. This paper contributes to predictive analytics by offering a data-driven approach to healthcare, providing insights to mitigate the global impact of coronary heart disease.
-
null (Ed.)Abstract Aims Coronary artery calcium (CAC) scoring is an established tool for cardiovascular risk stratification. However, the lack of widespread availability and concerns about radiation exposure have limited the universal clinical utilization of CAC. In this study, we sought to explore whether machine learning (ML) approaches can aid cardiovascular risk stratification by predicting guideline recommended CAC score categories from clinical features and surface electrocardiograms. Methods and results In this substudy of a prospective, multicentre trial, a total of 534 subjects referred for CAC scores and electrocardiographic data were split into 80% training and 20% testing sets. Two binary outcome ML logistic regression models were developed for prediction of CAC scores equal to 0 and ≥400. Both CAC = 0 and CAC ≥400 models yielded values for the area under the curve, sensitivity, specificity, and accuracy of 84%, 92%, 70%, and 75%, and 87%, 91%, 75%, and 81%, respectively. We further tested the CAC ≥400 model to risk stratify a cohort of 87 subjects referred for invasive coronary angiography. Using an intermediate or higher pretest probability (≥15%) to predict CAC ≥400, the model predicted the presence of significant coronary artery stenosis (P = 0.025), the need for revascularization (P < 0.001), notably bypass surgery (P = 0.021), and major adverse cardiovascular events (P = 0.023) during a median follow-up period of 2 years. Conclusion ML techniques can extract information from electrocardiographic data and clinical variables to predict CAC score categories and similarly risk-stratify patients with suspected coronary artery disease.more » « less
-
Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities.more » « less
-
Accurate and explainable health event predictions are becoming crucial for healthcare providers to develop care plans for patients. The availability of electronic health records (EHR) has enabled machine learning advances in providing these predictions. However, many deep-learning-based methods are not satisfactory in solving several key challenges: 1) effectively utilizing disease domain knowledge; 2) collaboratively learning representations of patients and diseases; and 3) incorporating unstructured features. To address these issues, we propose a collaborative graph learning model to explore patient-disease interactions and medical domain knowledge. Our solution is able to capture structural features of both patients and diseases. The proposed model also utilizes unstructured text data by employing an attention manipulating strategy and then integrates attentive text features into a sequential learning process. We conduct extensive experiments on two important healthcare problems to show the competitive prediction performance of the proposed method compared with various state-of-the-art models. We also confirm the effectiveness of learned representations and model interpretability by a set of ablation and case studies.