skip to main content


This content will become publicly available on October 2, 2024

Title: Can LLMs Generate Random Numbers? Evaluating LLM Sampling in Controlled Domains
Practitioners frequently take multiple samples from large language models (LLMs) to explore the distribution of completions induced by a given prompt. While individual samples can give high-quality results for given tasks, collectively there are no guarantees of the distribution over these samples induced by the generating LLM. In this paper, we empirically evaluate LLMs’ capabilities as distribution samplers. We identify core concepts and metrics underlying LLM-based sampling, including different sampling methodologies and prompting strategies. Using a set of controlled domains we evaluate the error and variance of the distributions induced by the LLM. We find that LLMs struggle to induce reasonable distributions over generated elements, suggesting that practitioners should more carefully consider the semantics and methodologies of sampling from LLMs.  more » « less
Award ID(s):
1918839
NSF-PAR ID:
10498692
Author(s) / Creator(s):
Publisher / Repository:
Sampling and Optimization in Discrete Space (SODS) ICML 2023 Workshop
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when “enough” examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort. 
    more » « less
  2. null (Ed.)
    Stochastic Gradient Langevin Dynamics (SGLD) have been widely used for Bayesian sampling from certain probability distributions, incorporating derivatives of the log-posterior. With the derivative evaluation of the log-posterior distribution, SGLD methods generate samples from the distribution through performing as a thermostats dynamics that traverses over gradient flows of the log-posterior with certainly controllable perturbation. Even when the density is not known, existing solutions still can first learn the kernel density models from the given datasets, then produce new samples using the SGLD over the kernel density derivatives. In this work, instead of exploring new samples from kernel spaces, a novel SGLD sampler, namely, Randomized Measurement Langevin Dynamics (RMLD) is proposed to sample the high-dimensional sparse representations from the spectral domain of a given dataset. Specifically, given a random measurement matrix for sparse coding, RMLD first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the measurement matrix. The algorithm analysis shows that RMLD indeed projects a given dataset into a high-dimensional Gaussian distribution with Laplacian prior, then draw new sparse representation from the dataset through performing SGLD over the distribution. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of RMLD beyond baseline methods. 
    more » « less
  3. Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) methods have been widely used to sample from certain probability distributions, incorporating (kernel) density derivatives and/or given datasets. Instead of exploring new samples from kernel spaces, this piece of work proposed a novel SGHMC sampler, namely Spectral Hamiltonian Monte Carlo (SpHMC), that produces the high dimensional sparse representations of given datasets through sparse sensing and SGHMC. Inspired by compressed sensing, we assume all given samples are low-dimensional measurements of certain high-dimensional sparse vectors, while a continuous probability distribution exists in such high-dimensional space. Specifically, given a dictionary for sparse coding, SpHMC first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the dictionary. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of SpHMC beyond baseline methods. 
    more » « less
  4. Recent work has aimed to capture nuances of human behavior by using LLMs to simulate responses from particular demographics in settings like social science experiments and public opinion surveys. However, there are currently no established ways to discuss or evaluate the quality of such LLM simulations. Moreover, there is growing concern that these LLM simulations are flattened caricatures of the personas that they aim to simulate, failing to capture the multidimensionality of people and perpetuating stereotypes. To bridge these gaps, we present CoMPosT, a framework to characterize LLM simulations using four dimensions: Context, Model, Persona, and Topic. We use this framework to measure open-ended LLM simulations’ susceptibility to caricature, defined via two criteria: individuation and exaggeration. We evaluate the level of caricature in scenarios from existing work on LLM simulations. We find that for GPT-4, simulations of certain demographics (political and marginalized groups) and topics (general, uncontroversial) are highly susceptible to caricature. 
    more » « less
  5. With recent advancements, large language models (LLMs) such as ChatGPT and Bard have shown the potential to disrupt many industries, from customer service to healthcare. Traditionally, humans interact with geospatial data through software (e.g., ArcGIS 10.3) and programming languages (e.g., Python). As a pioneer study, we explore the possibility of using an LLM as an interface to interact with geospatial datasets through natural language. To achieve this, we also propose a framework to (1) train an LLM to understand the datasets, (2) generate geospatial SQL queries based on a natural language question, (3) send the SQL query to the backend database, (4) parse the database response back to human language. As a proof of concept, a case study was conducted on real-world data to evaluate its performance on various queries. The results show that LLMs can be accurate in generating SQL code for most cases, including spatial joins, although there is still room for improvement. As all geospatial data can be stored in a spatial database, we hope that this framework can serve as a proxy to improve the efficiency of spatial data analyses and unlock the possibility of automated geospatial analytics.

     
    more » « less