skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Counting the genetic ancestors from source populations in members of an admixed population
Abstract In a genetically admixed population, admixed individuals possess genealogical and genetic ancestry from multiple source groups. Under a mechanistic model of admixture, we study the number of distinct ancestors from the source populations that the admixture represents. Combining a mechanistic admixture model with a recombination model that describes the probability that a genealogical ancestor is a genetic ancestor, for a member of a genetically admixed population, we count genetic ancestors from the source populations—those genealogical ancestors from the source populations who contribute to the genome of the modern admixed individual. We compare patterns in the numbers of genealogical and genetic ancestors across the generations. To illustrate the enumeration of genetic ancestors from source populations in an admixed group, we apply the model to the African-American population, extending recent results on the numbers of African and European genealogical ancestors that contribute to the pedigree of an African-American chosen at random, so that we also evaluate the numbers of African and European genetic ancestors who contribute to random African-American genomes. The model suggests that the autosomal genome of a random African-American born in the interval 1960–1965 contains genetic contributions from a mean of 162 African (standard deviation 47, interquartile range 127–192) and 32 European ancestors (standard deviation 14, interquartile range 21–43). The enumeration of genetic ancestors can potentially be performed in other diploid species in which admixture and recombination models can be specified.  more » « less
Award ID(s):
2116322
PAR ID:
10498813
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GENETICS
Volume:
226
Issue:
4
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Members of genetically admixed populations possess ancestry from multiple source groups, and studies of human genetic admixture frequently estimate ancestry components corresponding to fractions of individual genomes that trace to specific ancestral populations. However, the same numerical ancestry fraction can represent a wide array of admixture scenarios within an individual’s genealogy. Using a mechanistic model of admixture, we consider admixture genealogically: how many ancestors from the source populations does the admixture represent? We consider African-Americans, for whom continent-level estimates produce a 75–85% value for African ancestry on average and 15–25% for European ancestry. Genetic studies together with key features of African-American demographic history suggest ranges for parameters of a simple three-epoch model. Considering parameter sets compatible with estimates of current ancestry levels, we infer that if all genealogical lines of a random African-American born during 1960–1965 are traced back until they reach members of source populations, the mean over parameter sets of the expected number of genealogical lines terminating with African individuals is 314 (interquartile range 240–376), and the mean of the expected number terminating in Europeans is 51 (interquartile range 32–69). Across discrete generations, the peak number of African genealogical ancestors occurs in birth cohorts from the early 1700s, and the probability exceeds 50% that at least one European ancestor was born more recently than 1835. Our genealogical perspective can contribute to further understanding the admixture processes that underlie admixed populations. For African-Americans, the results provide insight both on how many of the ancestors of a typical African-American might have been forcibly displaced in the Transatlantic Slave Trade and on how many separate European admixture events might exist in a typical African-American genealogy. 
    more » « less
  2. Abstract Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plantCentaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion. 
    more » « less
  3. Abstract Climate change can affect the length and timing of seasons, which in turn can alter the time available for insects to complete their life cycles and successfully reproduce. Intraspecific hybridization between individuals from genetically distinct populations, or admixture, can boost fitness in populations experiencing environmental challenges. Admixture can particularly benefit small and isolated populations that may have high genetic load by masking deleterious alleles, thereby immediately increasing fitness, and also by increasing the genetic variation available for adaptive evolution. To evaluate the effects of admixture on populations exposed to a novel life cycle constraint, we used the red flour beetle,Tribolium castaneum, as a model system. Distinct laboratory lineages were kept isolated or mixed together to create populations containing 1–4 lineages. We then compared the fitness of admixed populations to 1‐lineage populations while subjecting them to a shortened generation time for three generations. Admixture did not influence fitness after two generations. In contrast, in the third generation, admixed populations had significantly greater fitness compared with 1‐lineage populations. The timing of the increase in fitness for the admixed populations suggests that adaptation to the novel environmental constraint occurred in the experimental populations. Our study highlights the importance of admixture for facilitating rapid adaptation to changes in seasonality, and more broadly to environmental change. 
    more » « less
  4. Schiffels, Stephan (Ed.)
    Movement of individuals between populations or demes is often restricted, especially between geographically isolated populations. The structured coalescent provides an elegant theoretical framework for describing how movement between populations shapes the genealogical history of sampled individuals and thereby structures genetic variation within and between populations. However, in the presence of recombination an individual may inherit different regions of their genome from different parents, resulting in a mosaic of genealogical histories across the genome, which can be represented by an Ancestral Recombination Graph (ARG). In this case, different genomic regions may have different ancestral histories and so different histories of movement between populations. Recombination therefore poses an additional challenge to phylogeographic methods that aim to reconstruct the movement of individuals from genealogies, although also a potential benefit in that different loci may contain additional information about movement. Here, we introduce the Structured Coalescent with Ancestral Recombination (SCAR) model, which builds on recent approximations to the structured coalescent by incorporating recombination into the ancestry of sampled individuals. The SCAR model allows us to infer how the migration history of sampled individuals varies across the genome from ARGs, and improves estimation of key population genetic parameters such as population sizes, recombination rates and migration rates. Using the SCAR model, we explore the potential and limitations of phylogeographic inference using full ARGs. We then apply the SCAR to lineages of the recombining fungus Aspergillus flavus sampled across the United States to explore patterns of recombination and migration across the genome. 
    more » « less
  5. Abstract Non‐random mating among individuals can lead to spatial clustering of genetically similar individuals and population stratification. This deviation from panmixia is commonly observed in natural populations. Consequently, individuals can have parentage in single populations or involving hybridization between differentiated populations. Accounting for this mixture and structure is important when mapping the genetics of traits and learning about the formative evolutionary processes that shape genetic variation among individuals and populations. Stratified genetic relatedness among individuals is commonly quantified using estimates of ancestry that are derived from a statistical model. Development of these models for polyploid and mixed‐ploidy individuals and populations has lagged behind those for diploids. Here, we extend and test a hierarchical Bayesian model, calledentropy, which can use low‐depth sequence data to estimate genotype and ancestry parameters in autopolyploid and mixed‐ploidy individuals (including sex chromosomes and autosomes within individuals). Our analysis of simulated data illustrated the trade‐off between sequencing depth and genome coverage and found lower error associated with low‐depth sequencing across a larger fraction of the genome than with high‐depth sequencing across a smaller fraction of the genome. The model has high accuracy and sensitivity as verified with simulated data and through analysis of admixture among populations of diploid and tetraploidArabidopsis arenosa. 
    more » « less