skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data report: using XRF scanning–derived grain size analysis for rapid assessment of bottom current velocities on long drill cores from the southern Scotia Sea, IODP Expedition 382
Past bottom current velocities are usually determined from the sortable silt (SS) fraction of sediments. This method yields precise results, but the work associated with the preparation for and analysis of SS is very time consuming. Using data and samples from Site U1537, which was drilled during International Ocean Discovery Program (IODP) Expedition 382 (Iceberg Alley and Subantarctic Ice and Ocean Dynamics), we followed a method that allows for the reconstruction of bottom current velocities on long and highly resolved sediment records, as typically recovered during an IODP expedition. Here, we present discrete measurements of SS from Site U1537 that were used to convert X-ray fluorescence (XRF) core scanner Zr/Rb data into SS and ultimately into bottom current velocities. The use of XRF-derived SS data and current speeds allows us to generate a near-continuous high-resolution record for the past 200 ky. Because Site U1537 is located close to the Southern Antarctic Circumpolar Current Front (SACCF), this long-term reconstruction allows us to analyze and understand changes in the location of the SACCF.  more » « less
Award ID(s):
1326927
PAR ID:
10498860
Author(s) / Creator(s):
;
Publisher / Repository:
International Ocean Discovery Program
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program Expedition reports
Volume:
382
Issue:
201
ISSN:
2377-3189
Subject(s) / Keyword(s):
International Ocean Discovery Program IODP JOIDES Resolution Expedition 382 Iceberg Alley and Subantarctic Ice and Ocean Dynamics Site U1537 Dove Basin Scotia Sea Weddell Sea bottom current velocity Antarctic Circumpolar Current grain size distribution X-ray fluorescence XRF XRF scanning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semiquantitative elemental results from X-ray fluorescence (XRF) scanning of sediment cores from International Ocean Discovery Program (IODP) Site U1574 in the Vøring Plateau, Norwegian Margin, are presented in this report. XRF elemental data were collected every 1 cm from a stratigraphically complete and continuous cored section with 102% recovery from the sea bottom to ~170 meters below seafloor in Hole U1574C. We report raw element intensities (counts) for Al, Si, K, Ca, Ti, Fe, Br, Sr, and Zr and identify covariation patterns consistent with lithofacies variations. Our high-resolution XRF scanning was conducted to better characterize the sediment depositional history at Site U1574 and to aid interpretation of past environmental and oceanographic conditions in the Norwegian Margin, targeting the earliest incursion of deep water into the young North Atlantic Ocean during the Early to Middle Eocene. The high-resolution XRF data also may help improve the age-depth model for the sediment succession at Site U1574. 
    more » « less
  2. Abstract. Biostratigraphy is frequently used to generate age models and is significant to understanding the rate and timing of Cenozoic climate change. Records from the Southern Ocean (SO) are particularly valuable in understanding the past behavior of the Antarctic Ice Sheet, whereby clues to this behavior can be gained from the presence and composition of preserved microfossils. Diatoms, a nearly ubiquitous group of microalgae that make cell walls out of opal, preserve well in Southern Ocean sediments and have been used extensively in Southern Ocean biostratigraphy. Here, we present an updated diatom biostratigraphy of the Southern Ocean extending 3.3 Myr from sediments recovered during International Ocean Discovery Program (IODP) Expedition 382 “Iceberg Alley” Site U1537. Furthermore, we compare a tuned age model to a paleomagnetic-based age model to provide two independent estimates of ages of these datums with quantified uncertainty. The high sedimentation rate found at Site U1537 allows detailed age assessment, allowing the generation of more finely tuned age models in Southern Ocean sediments. 
    more » « less
  3. To estimate the calcium carbonate (CaCO3) content in the Site U1543 sediment core samples retrieved during International Ocean Discovery Program (IODP) Expedition 383 at high downcore resolution, the X-ray fluorescence (XRF) scanning Ca data, at a spacing of every 10 mm downcore, were calibrated using a total of 118 coulometry-based discrete CaCO3 analyses from the upper 30 meters composite depth (mcd) along the splice. To remove the volume measurement problems of XRF and estimating CaCO3 contents quantitatively, first, raw XRF peak areas were scaled to reduce the effect resulting from the differences in efficiency at absorbing X-rays. Then, the scaled XRF scanning data were normalized to adjust the variability of the amount of XRF peak areas due to porosity and calibrated to properly estimate CaCO3 content. Based on the quality assessment, the calibrated XRF CaCO3 estimates are within ±4.50 wt% of the discrete measurements (1 standard deviation). This data report presents a discrete CaCO3 measurement data set, a normalized median-scaled XRF data set, and XRF CaCO3 estimates on the core depth below seafloor, Method A (CSF-A), and core composite depth below seafloor, Method A (CCSF-A), depth scales. 
    more » « less
  4. During International Ocean Discovery Program (IODP) Expeditions 390C, 395E, 390, and 393, deepwater sediments were recovered from the western flank of the southern Mid-Atlantic Ridge along a crustal flow line at ~31°S. This multidisciplinary experiment allowed the recovery of data fundamental to reconstructing past climate changes as well as variations in ocean circulation, productivity, and chemistry (i.e., fluctuations in the carbonate compensation depth) in the South Atlantic Ocean. Here, we report semiquantitative elemental results from X-ray fluorescence (XRF) scanning of the sediment package cored at IODP Site U1559 in the South Atlantic Ocean. Located at 15°02.0941′W, Site U1559 is the easternmost site of the South Atlantic Transect and the closest to the Mid-Atlantic Ridge, located on ~6.6. Ma ocean crust. The XRF data are also compared with magnetic susceptibility and natural gamma radiation measured on the R/V JOIDES Resolution to assess correlations with the different lithologic units/subunits. At Site U1559, sediments are predominantly nannofossil ooze with varying amounts of foraminifera, which is reflected by the dominant Ca counts. Trends in elemental counts reflect the slight variations in siliciclastic materials within the Pleistocene. Major shifts in elemental counts were observed at the sharp contact between Pliocene–Pleistocene Subunits IC and ID, as well as the Miocene–Pliocene transition. 
    more » « less
  5. Abstract Early Pleistocene Marine Isotope Stage (MIS)‐31 (1.081–1.062 Ma) is a unique interval of extreme global warming, including evidence of a West Antarctic Ice Sheet (WAIS) collapse. Here we present a new 1,000‐year resolution, spanning 1.110–1.030 Ma, diatom‐based reconstruction of primary productivity, relative sea surface temperature changes, sea‐ice proximity/open ocean conditions and diatom species absolute abundances during MIS‐31, from the Scotia Sea (59°S) using deep‐sea sediments collected during International Ocean Discovery Program (IODP) Expedition 382. The lower Jaramillo magnetic reversal (base of C1r.1n, 1.071 Ma) provides a robust and independent time‐stratigraphic marker to correlate records from other drill cores in the Antarctic Zone of the Southern Ocean (AZSO). An increase in open ocean speciesFragilariopsis kerguelensisin early MIS‐31 at 53°S (Ocean Drilling Program Site 1,094) correlates with increased obliquity forcing, whereas at 59°S (IODP Site U1537; this study) three progressively increasing, successive peaks in the relative abundance ofF. kerguelensiscorrelate with Southern Hemisphere‐phased precession pacing. These observations reveal a complex pattern of ocean temperature change and sustained sea surface temperature increase lasting longer than a precession cycle within the Atlantic sector of the AZSO. Timing of an inferred WAIS collapse is consistent with delayed warmth (possibly driven by sea‐ice dynamics) in the southern AZSO, supporting models that indicate WAIS sensitivity to local sub‐ice shelf melting. Anthropogenically enhanced impingement of relatively warm water beneath the ice shelves today highlights the importance of understanding dynamic responses of the WAIS during MIS‐31, a warmer than Holocene interglacial. 
    more » « less