Globally, universities have heavily invested in makerspaces. This investment requires an understanding of how students use tools and how tools to aid in engineering education, as well as how the spaces can be improved. Network analysis of human systems can often yield valuable information about how the networks work and function. Applying network techniques to makerspaces can yield helpful information that is otherwise not visible. This thesis’s primary focus is the application of a variety of bio-inspired network techniques to improve the understanding of the makerspace. Several parallels can be drawn between makerspace networks and other mutualistic networks, such as plant-and-pollinator networks where the system’s success depends on the interaction between the two species. The ecological metrics would establish measurable values that the health and conditions of a network can be evaluated using. These three metrics are nestedness, modularity, and connectance, which can provide structural information about the network and act as diagnostics tools that can change depending on different system conditions. The makerspace at the universities went through several regulatory changes due to COVID-19, providing a unique opportunity to utilize the metrics to analyze the health of the space under higher regulatory restrictions and return to normal operations. The makerspace is converted into a bipartite network to allow for ecological analysis techniques where the spaces are modeled with students interacting with tools. Null models evaluate the significance of the nestedness and modularity results. Findings indicate that makerspaces tend to be structurally nested, but when compared to normal operating conditions, they can be seen to exhibit modularity during the higher restriction environment. The makerspace network and subsequent analysis provide insight into the use of ecological metrics in human systems and provide potential ideas for results to be used in various networks. The following network analysis also yields valuable information identifying essential hub tools and student interactions within the space, showcasing the capabilities the ecological study of human networks can have on human systems.
more »
« less
Bio‐inspired human network diagnostics: Ecological modularity and nestedness as quantitative indicators of human engineered network function
Analyzing interactions between actors from a systems perspective yields valuable information about the overall system's form and function. When this is coupled with ecological modeling and analysis techniques, biological inspiration can also be applied to these systems. The diagnostic value of three metrics frequently used to study mutualistic biological ecosystems (nestedness, modularity, and connectance) is shown here using academic engineering makerspaces. Engineering students get hands‐on usage experience with tools for personal, class, and competition‐based projects in these spaces. COVID‐19 provides a unique study of university makerspaces, enabling the analysis of makerspace health through the known disturbance and resultant regulatory changes (implementation and return to normal operations). Nestedness, modularity, and connectance are shown to provide information on space functioning in a way that enables them to serve as heuristic diagnostics tools for system conditions. The makerspaces at two large R1 universities are analyzed across multiple semesters by modeling them as bipartite student‐tool interaction networks. The results visualize the predictive ability of these metrics, finding that the makerspaces tended to be structurally nested in any one semester, however when compared to a “normal” semester the restrictions are reflected via a higher modularity. The makerspace network case studies provide insight into the use and value of quantitative ecosystem structure and function indicators for monitoring similar human‐engineered interaction networks that are normally only tracked qualitatively.
more »
« less
- PAR ID:
- 10498870
- Editor(s):
- Clifford Whitcomb
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Systems Engineering
- ISSN:
- 1098-1241
- Page Range / eLocation ID:
- 1-13
- Subject(s) / Keyword(s):
- bio-inspired design connectance makerspaces modularity nestedness network analysis system design
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As the popularity of makerspaces and maker culture has skyrocketed over the past two decades, numerous studies have been conducted to investigate the benefits of makerspaces for university students and how to best establish an inclusive, welcoming environment in these spaces on college campuses. However, unprecedented disruptions, such as the COVID-19 pandemic, have the potential to greatly affect the way that students interact with makerspaces and the benefits that result. In this study, a survey asking about prior makerspace involvement, tool usage, and student demographics was administered to students who use academic makerspaces at two large public universities. Survey data was collected for three semesters (Fall 2020, Spring 2021, and Spring 2022) and spanned both during and after the height of the COVID-19 pandemic. To quantify the differences between the semesters, nestedness and connectance metrics inspired by ecological plant-pollinator networks were utilized. These ecological metrics allow for the structure of the interactions of a network to be measured, with nestedness highlighting how students interact with tools and connectance with the quantity of student-to-tool interaction. The network analysis was used to better gauge the health of the makerspace and the type and frequency of interactions between tools. The raw survey data combined with the ecological metrics provided unique insight into the struggles the makerspaces encountered throughout the pandemic. It was found that nestedness, a measure of system stability, decreases with a decrease in tool usage. Additionally, the higher the connectance the more students interacted with the space. Utilizing metrics such as these and better understanding student tool interactions can aid makerspaces in monitoring their success and maintaining a healthy and welcoming space, as well as tracking the current health of the space. In combination with the survey results, a deep understanding of what challenges the space is facing can be captured.more » « less
-
Prior research emphasizes the benefits of university makerspaces, but overall, quantitative metrics to measure how a makerspace is doing have not been available. Drawing on an analogy to metrics used for the health of industrial ecosystems, this article evaluates changes during and after COVID-19 for two makerspaces. The COVID-19 pandemic disturbed normal life worldwide and campuses were closed. When students returned, campus life looked different, and COVID-19-related restrictions changed frequently. This study uses online surveys distributed to two university makerspaces with different restrictions. Building from the analysis of industrial ecosystems, the data were used to create bipartite network models with students and tools as the two interacting actor groups. Modularity, nestedness, and connectance metrics, which are frequently used in ecology for mutualistic ecosystems, quantified the changing usage patterns. This unique approach provides quantitative benchmarks to measure and compare makerspaces. The two makerspaces were found to have responded very differently to the disruption, though both saw a decline in overall usage and impact on students and the space’s health and had different recoveries. Network analysis is shown to be a valuable method to evaluate the functionality of makerspaces and identify if and how much they change, potentially serving as indicators of unseen issues.more » « less
-
Academic makerspaces have continued to rise in popularity as research shows the diverse benefits they provide to students. More and more engineering curriculums are incorporating makerspaces and as such there is a need to better understand how their student users can best be served. Surveys administered to makerspace users at a public research university in the Southwest United States during Fall 2020, Spring 2021, Spring 2022, and Fall 2022 tracked student tool usage trends with academic career stages. The survey asked questions about prior experience, motivation, tool usage, and demographics. Analyzed results for mechanical engineering student users provide insight into how curriculum and class year affect the specific tools used and the percentage of students who used a particular tool. The survey results also create a bipartite network model of students and tools, mimicking plant-pollinator type mutualistic networks in ecology. The bipartite network models the student interactions with the tools and visualizes how students interact with the tools. This network modeling enables ecological network analysis techniques to identify key makerspace actors quantitatively. Ecological modularity, for example, identifies divisions in the student-tool makerspace network that highlight how students from different majors (here we investigate mechanical) utilize the makerspace's tools. Modularity is also able to identify “hub” tools in the space, defined as tools central to a student's interaction within the space, based on student-tool connectivity data. The analysis finds that tools commonly used for class by mechanical engineering students, such as the 3D printer or laser cutter, act as gateway tools that bring users into the space and help spark interest in the space's other tools. Using the combined insights from the survey results and the network analysis, ecological network metrics are shown here to be a promising route for informing makerspace policy, tool purchases, and curriculum development. The results can help ensure that the space is set up to give students the best learning opportunities.more » « less
-
There has been dramatic growth in the number of makerspaces at educational institutions. More research is needed to understand student interactions in these spaces and how these spaces should be designed to support student learning. This project uses network analysis techniques to study the network of activities in a makerspace that lead to successful student experiences. The proposed analyses will model a makerspace as a network of interactions between equipment, staff, and students. Results from this study will help educators to 1) identify and remove previously unknown hurdles for students who rarely use the space, 2) design an effective space using limited resources, 3) understand the impact of new equipment or staff, and 4) create learning opportunities such as workshops and curriculum integration that increase student learning. The new knowledge produced by this project may be useful for maximizing equipment and support infrastructure, and for guiding new equipment purchases. Thus, the results will support further development of effective makerspaces. This project hypothesizes that network-level analyses and metrics can provide valuable insights into student learning in makerspaces and will support what-if scenarios for proposed changes in spaces. Systems modeling and analysis have been used successfully to understand complex human and biological networks. In the context of makerspaces, this technique will provide measures of interaction between system components such as students, staff, and equipment. The analyses will identify the system components that are frequently used when students work in the makerspace over multiple visits. The project will allow for the comparison of makerspaces that have different levels of integration with the curriculum and methods of student introduction (pop-up classes, tours, extra-curricular competitions, advertising, and bring a friend). Demonstration of the effectiveness of the analyses in characterizing makerspaces and the ease of data collection will help support the use of this approach in future work that compares makerspaces nationwide. Current results explore the order in which students choose to learn and use the tools in the space, which tools/features are used most frequently and how the data from the daily entry/exit surveys compares to the end-of-semester self-reports. A key question in this research, especially for making it adoptable by other universities, is if end-of-semester, self-reported data is accurate enough to create informative, actionable guidance from the network models without requiring the daily tool usage data.more » « less
An official website of the United States government

