Abstract Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forP. syntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofP. syntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.
more »
« less
Putting infection on the map: Using heatmaps to characterize within- and between-host distributions of trematode metacercariae
Abstract The location of parasites within individual hosts is often treated as a static trait, yet many parasite species can occur in multiple locations or organs within their hosts. Here, we apply distributional heat maps to study the within- and between-host infection patterns for four trematodes (Alaria marcianae, Cephalogonimus americanus, Echinostomaspp. andRibeiroia ondatrae) within the amphibian hostsPseudacris regillaand two species ofTaricha.We developed heatmaps from 71 individual hosts from six locations in California, which illustrate stark differences among parasites both in their primary locations within amphibian hosts as well as their degree of location specificity. While metacercariae (i.e., cysts) of two parasites (C. americanusandA. marcianae) were relative generalists in habitat selection and often occurred throughout the host, two others (R. ondatraeandEchinostomaspp.) were highly localised to a specific organ or organ system. Comparing parasite distributions among these parasite taxa highlighted locations of overlap showing potential areas of interactions, such as the mandibular inner dermis region, chest and throat inner dermis and the tail reabsorption outer epidermis. Additionally, the within-host distribution ofR. ondatraediffered between host species, with metacercariae aggregating in the anterior dermis areas of newts, compared with the posterior dermis area in frogs. The ability to measure fine-scale changes or alterations in parasite distributions has the potential to provide further insight about ecological questions concerning habitat preference, resource selection, host pathology and disease control.
more »
« less
- Award ID(s):
- 1754171
- PAR ID:
- 10498889
- Publisher / Repository:
- Journal of Helminthology
- Date Published:
- Journal Name:
- Journal of Helminthology
- Volume:
- 97
- ISSN:
- 0022-149X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Why parasites occur in certain hosts in certain locations has been a long-standing question among ecological and evolutionary parasitologists. Encounter and compatibility filters summarize the likelihood that a host and parasite will physically interact and establish an infection upon contact. Encounter and compatibility filters are not fixed and, among multiple locations, the abiotic environmental characteristics and biotic community composition that contribute to the filters often vary spatially and temporally. Abiotic variation may directly affect hosts or parasites —particularly parasites with one or more free-living stages— whereas the local biotic community may dilute or amplify parasite transmission. Unlike directly transmitted parasites, complex-life cycle parasites use multiple hosts, thus having life cycles that, we hypothesize, are highly susceptible to the effects of spatiotemporal environmental variation. We modeled infection probability relationships of endohelminths from post-metamorphic wood frogs (Rana [Lithobates] sylvatica) and northern leopard frogs (Rana pipiens) with wetland characteristics, landscape composition, and the anuran species within the local community. Parasites included complex-life cycle trematodes that use amphibians as definitive hosts (Haematoloechus spp., Glypthelmins quieta) or as intermediate hosts (Alaria sp., Neodiplostomum sp., echinostomatids, Lechriorchis) and nematodes with direct or indirect life cycles (Cosmocercoides, Oswaldocruzia). Although our results demonstrate that distributions of parasites with complex and direct life cycles are correlated with some abiotic and biotic characteristics of the environment, there were few general trends. Each parasite's distribution had its own unique relationship with wetland, landscape, and amphibian-community variables and there was overall low predictability for most species. One landscape feature — the number of wetlands within the vicinity of the site of amphibian capture — was commonly included in top models for leopard frogs and could be associated with how definitive hosts (e.g., amphibians, mammals, birds) and intermediate hosts (e.g., snails, odonates) use the landscape. The amphibian community at any given site also commonly affected infection probabilities, such that the local presence of other species tended to reduce infection probabilities in sampled frogs, lending support to the dilution effect at the landscape level. Our research highlights the need to consider spatiotemporal sampling, environmental variation, and host-community variation when studying parasite prevalence in any given component community.more » « less
-
Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifying β‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease. To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog, Pseudacris regilla and the California newt, Taricha torosa) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ‐diversity) was composed of within‐host parasite richness (α‐diversity) and turnover (β‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined how β‐diversity varied across time at each biological scale. Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition. Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts.more » « less
-
null (Ed.)A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host ( Pseudacris regilla ) and infection by a pathogenic trematode ( Ribeiroia ondatrae ) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host–parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate.more » « less
-
A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host (Pseudacris regilla) and infection by a pathogenic trematode (Ribeiroia ondatrae) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host–parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate.more » « less
An official website of the United States government

