Abstract Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forP. syntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofP. syntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.
more »
« less
This content will become publicly available on May 23, 2026
AMPHIBIAN PARASITES EXHIBIT IDIOSYNCRATIC RELATIONSHIPS WITH SPATIOTEMPORAL ENVIRONMENTAL AND HOST-COMMUNITY VARIATION
Why parasites occur in certain hosts in certain locations has been a long-standing question among ecological and evolutionary parasitologists. Encounter and compatibility filters summarize the likelihood that a host and parasite will physically interact and establish an infection upon contact. Encounter and compatibility filters are not fixed and, among multiple locations, the abiotic environmental characteristics and biotic community composition that contribute to the filters often vary spatially and temporally. Abiotic variation may directly affect hosts or parasites —particularly parasites with one or more free-living stages— whereas the local biotic community may dilute or amplify parasite transmission. Unlike directly transmitted parasites, complex-life cycle parasites use multiple hosts, thus having life cycles that, we hypothesize, are highly susceptible to the effects of spatiotemporal environmental variation. We modeled infection probability relationships of endohelminths from post-metamorphic wood frogs (Rana [Lithobates] sylvatica) and northern leopard frogs (Rana pipiens) with wetland characteristics, landscape composition, and the anuran species within the local community. Parasites included complex-life cycle trematodes that use amphibians as definitive hosts (Haematoloechus spp., Glypthelmins quieta) or as intermediate hosts (Alaria sp., Neodiplostomum sp., echinostomatids, Lechriorchis) and nematodes with direct or indirect life cycles (Cosmocercoides, Oswaldocruzia). Although our results demonstrate that distributions of parasites with complex and direct life cycles are correlated with some abiotic and biotic characteristics of the environment, there were few general trends. Each parasite's distribution had its own unique relationship with wetland, landscape, and amphibian-community variables and there was overall low predictability for most species. One landscape feature — the number of wetlands within the vicinity of the site of amphibian capture — was commonly included in top models for leopard frogs and could be associated with how definitive hosts (e.g., amphibians, mammals, birds) and intermediate hosts (e.g., snails, odonates) use the landscape. The amphibian community at any given site also commonly affected infection probabilities, such that the local presence of other species tended to reduce infection probabilities in sampled frogs, lending support to the dilution effect at the landscape level. Our research highlights the need to consider spatiotemporal sampling, environmental variation, and host-community variation when studying parasite prevalence in any given component community.
more »
« less
- PAR ID:
- 10594261
- Publisher / Repository:
- KnowledgeWorks Global Ltd
- Date Published:
- Journal Name:
- Journal of Parasitology
- Volume:
- 111
- Issue:
- 3
- ISSN:
- 0022-3395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Immunity changes through ontogeny and can mediate facilitative and inhibitory interactions among co-infecting parasite species. In amphibians, most immune memory is not carried through metamorphosis, leading to variation in the complexity of immune responses across life stages. To test if the ontogeny of host immunity might drive interactions among co-infecting parasites, we simultaneously exposed Cuban treefrogs ( Osteopilus septentrionalis ) to a fungus ( Batrachochytrium dendrobaditis , Bd) and a nematode ( Aplectana hamatospicula ) at tadpole, metamorphic and post-metamorphic life stages. We measured metrics of host immunity, host health and parasite abundance. We predicted facilitative interactions between co-infecting parasites as the different immune responses hosts mount to combat these infectious are energetically challenging to mount simultaneously. We found ontogenetic differences in IgY levels and cellular immunity but no evidence that metamorphic frogs were more immunosuppressed than tadpoles. There was also little evidence that these parasites facilitated one another and no evidence that A. hamatospicula infection altered host immunity or health. However, Bd, which is known to be immunosuppressive, decreased immunity in metamorphic frogs. This made metamorphic frogs both less resistant and less tolerant of Bd infection than the other life stages. These findings indicate that changes in immunity altered host responses to parasite exposures throughout ontogeny. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’.more » « less
-
Some of the amphibian populations in Panama are demonstrating slow recovery decades after severe declines caused by the invasion of the fungal pathogenBatrachochytrium dendrobatidis(Bd). However, new species remain to be described and assessed for the mechanisms of disease resilience. We identified seven skin defense peptides from a presumably novel leopard frog species in the Tabasará range, at Buäbti (Llano Tugrí), Ngäbe-Buglé Comarca, and Santa Fe, Veraguas, Panama, herein called the Ngäbe-Buglé leopard frog. Two of the peptides were previously known: brevinin-1BLb fromRana (Lithobates) blairiand a previously hypothesized “ancestral” peptide, ranatuerin-2BPa. We hypothesized that the peptides are active againstBdand shape the microbiome such that the skin bacterial communities are more similar to those of other leopard frogs than of co-occurring host species. Natural mixtures of the collected skin peptides showed a minimum inhibitory concentration againstBdof 100 μg/ml, which was similar to that of other leopard frogs that have been tested. All sampled individuals hosted high intensity of infection withBd. We sampled nine other amphibian species in nearby habitats and found lower prevalence and intensities ofBdinfection. In addition to the pathogen load, the skin microbiomes were examined using 16S rRNA gene targeted amplicon sequencing. When compared to nine co-occurring amphibians, the Ngäbe-Buglé leopard frog had similar skin bacterial richness and anti-Bdfunction, but the skin microbiome structure differed significantly among species. The community composition of the bacterial skin communities was strongly associated with theBdinfection load. In contrast, the skin microbiome composition of the Ngäbe-Buglé leopard frog was similar to that of five North American leopard frog populations and the sympatric and congenericRana (Lithobates) warszewitschii, with 29 of the 46 core bacteria all demonstrating anti-Bdactivity in culture. Because of the highBdinfection load and prevalence in the Ngäbe-Buglé leopard frog, we suggest that treatment to reduce theBdload in this species might reduce the chytridiomycosis risk in the co-occurring amphibian community, but could potentially disrupt the evolution of skin defenses that provide a mechanism for disease resilience in this species.more » « less
-
Complex life cycle parasites, including helminths, use intermediate hosts for development and definitive hosts for reproduction, with interactions between the two host types governed by food web structure. I study how a parasite's intermediate host range is controlled by the diet breadth of definitive host species and the cost of parasite generalism, a putative fitness cost that assumes host range trades off against fitness derived from a host species. In spite of such costs, a benefit to generalism may occur when the definitive host exhibits a large diet breadth, enhancing transmission of generalist parasites via consumption of a broad array of infected intermediate hosts. I develop a simple theoretical model to demonstrate how different host range infection strategies are differentially selected for across a gradient of definitive host diet breadth according to the cost of generalism. I then use a parasitic helminth–host database in conjunction with a food web database to show that diet breadth of definitive hosts promotes generalist infection strategies at the intermediate host level, indicating relatively low costs of parasite generalism among helminths.more » « less
-
Abstract Understanding parasite transmission in communities requires knowledge of each species' capacity to support transmission. This property, ‘competence’, is a critical currency for modelling transmission under community change and for testing diversity–disease theory. Despite the central role of competence in disease ecology, we lack a clear understanding of the factors that generate competence and drive its variation.We developed novel conceptual and quantitative approaches to systematically quantify competence for a multi‐host, multi‐parasite community. We applied our framework to an extensive dataset: five amphibian host species exposed to four parasitic trematode species across five ecologically realistic exposure doses. Together, this experimental design captured 20 host–parasite interactions while integrating important information on variation in parasite exposure. Using experimental infection assays, we measured multiple components of the infection process and combined them to produce competence estimates for each interaction.With directly estimated competence values, we asked which components of the infection process best explained variation in competence: barrier resistance (the initial fraction of administered parasites blocked from infecting a host), internal clearance (the fraction of established parasites lost over time) or pre‐transmission mortality (the probability of host death prior to transmission). We found that variation in competence among the 20 interactions was best explained by differences in barrier resistance and pre‐transmission mortality, underscoring the importance of host resistance and parasite pathogenicity in shaping competence.We also produced dose‐integrated estimates of competence that incorporated natural variation in exposure to address questions on the basis and extent of variation in competence. We found strong signals that host species identity shaped competence variation (as opposed to parasite species identity). While variation in infection outcomes across hosts, parasites, individuals and doses was considerable, individual heterogeneity was limited compared to among‐species differences. This finding highlights the robustness of our competence estimates and suggests that species‐level values may be strong predictors for community‐level transmission in natural systems.Competence emerges from distinct underlying processes and can have strong species‐level characteristics; thus, this property has great potential for linking mechanisms of infection to epidemiological patterns. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government
