skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of sectored morphologies of polymer lamellae
When a solution of interpenetrating and entangled long flexible polymer chains is cooled to low enough temperatures, the chains crystallize into thin lamellae of nanoscopic thickness and microscopic lateral dimensions. Depending on the nature of the solvent and growth conditions, the lamellae exhibit several sectors that have differing growth kinetics and melting temperatures. Remarkably, these lamellae can spontaneously form tentlike morphology. The experimentally well-documented phenomenology of lamellar sectorization and tent formation has so far eluded a fundamental understanding of their origins. We present a theoretical model to explain this longstanding challenge and derive conditions for the relative stabilities of planar, sectored, and tent morphologies for polymer lamellae in terms of their elastic constants and interfacial tensions. While the present model offers an explanation of the origin of the spontaneous formation of sectored tentlike morphology as well as sectored planar morphology, in contrast to planar unsectored morphology, predictions are made for morphology transformations based on the materials properties of the polymeric lamellae.  more » « less
Award ID(s):
2015935
PAR ID:
10498937
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
108
Issue:
5
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a theory of melting kinetics of semicrystalline polymers at temperatures above the equilibrium melting temperature, by accounting for conformational entropy of chains during melting. We have derived free energy landscapes for escape of individual chains from a lamella into the amorphous phase as a function of the characteristics of the initial lamella, such as the lamellar thickness, number of chain folds, fold‐ and lateral‐surface free energies, and mean energy of a monomer inside the lamella. We show that melting of lamellae is always accompanied by a free energy barrier which is entirely entropic in origin. In terms of the parameters characterizing the lamellae and the extent of superheating, closed‐form formulas are presented for the equilibrium melting temperature, driving force for crystallization, free energy barrier height, average expulsion time of a single chain from a lamella, and the melting velocity of lamellae. The present entropic barrier theory predicts that the dependence of melting velocity on superheating is nonlinear and non‐Arrhenius, in qualitative agreement with experimental observations reported in the literature. The derived formulas open an opportunity to further explore the role of various molecular features of semicrystalline polymers on their melting kinetics. 
    more » « less
  2. null (Ed.)
    Hydrogels constructed with functionalized polysaccharides are of interest in a multitude of applications, chiefly the design of therapeutic and regenerative formulations. Tailoring the chemical modification of polysaccharide-based hydrogels to achieve specific drug release properties involves the optimization of many tunable parameters, including (i) the type, degree ( χ ), and pattern of the functional groups, (ii) the water–polymer ratio, and (iii) the drug payload. To guide the design of modified polysaccharide hydrogels for drug release, we have developed a computational toolbox that predicts the structure and physicochemical properties of acylated chitosan chains, and their impact on the transport of drug molecules. Herein, we present a multiscale coarse-grained model to investigate the structure of networks of chitosan chains modified with acetyl, butanoyl, or heptanoyl moieties, as well as the diffusion of drugs doxorubicin (Dox) and gemcitabine (Gem) through the resulting networks. The model predicts the formation of different network structures, in particular the hydrophobically-driven transition from a uniform to a cluster/channel morphology and the formation of fibers of chitin chains. The model also describes the impact of structural and physicochemical properties on drug transport, which was confirmed experimentally by measuring Dox and Gem diffusion through an ensemble of modified chitosan hydrogels. 
    more » « less
  3. Metalorganic chemical vapor deposition (MOCVD) growths of β-Ga 2 O 3 on on-axis (100) Ga 2 O 3 substrates are comprehensively investigated. Key MOCVD growth parameters including growth temperature, pressure, group VI/III molar flow rate ratio, and carrier gas flow rate are mapped. The dependence of the growth conditions is correlated with surface morphology, growth rate, and electron transport properties of the MOCVD grown (100) β-Ga 2 O 3 thin films. Lower shroud gas (argon) flow is found to enhance the surface smoothness with higher room temperature (RT) electron Hall mobility. The growth rate of the films decreases but with an increase of electron mobility as the VI/III molar flow rate ratio increases. Although no significant variation on the surface morphologies is observed at different growth temperatures, the general trend of electron Hall mobilities are found to increase with increasing growth temperature. The growth rates reduce significantly with uniform surface morphologies as the chamber pressure increases. By tuning the silane flow rate, the controllable carrier concentration of (100) β-Ga 2 O 3 thin films between low-10 17  cm −3 and low-10 18  cm −3 was achieved. Under optimized growth condition, an (100) β-Ga 2 O 3 thin film with RMS roughness value of 1.64 nm and a RT mobility of 24 cm 2 /Vs at a carrier concentration of 7.0 × 10 17  cm −3 are demonstrated. The mobilities are primarily limited by the twin lamellae and stacking faults defects generated from the growth interface. Atomic resolution scanning transmission electron microscopy reveals the formation of twin boundary defects in the films, resulting in the degradation of crystalline quality. Results from this work provide fundamental understanding of the MOCVD epitaxy of (100) β-Ga 2 O 3 on on-axis Ga 2 O 3 substrates and the dependence of the material properties on growth conditions. The limitation of electron transport properties of the (100) β-Ga 2 O 3 thin films below 25 cm 2 /Vs is attributed to the formation of incoherent boundaries (twin lamellae) and stacking faults grown along the on-axis (100) crystal orientation. 
    more » « less
  4. We performed extensive molecular dynamics simulations using a bead–spring model to investigate the interfacial behavior of blends of linear and cyclic polymer chains confined between two planar, attractive substrates. The model system was studied over a range of chain lengths spanning an order of magnitude in the number of beads for varying blend compositions and for two different levels of substrate affinity. For short chains, we observed the preferential adsorption of linear chains at the substrate interface when they are the majority component (10% cyclic chains) as well as at equimolar composition. In contrast, for longer chains, cyclic chains are preferentially enriched at the interface. These results extend recent findings from neutron reflectivity experiments—where the enrichment of cyclic polystyrene chains at low-energy surfaces was demonstrated—to systems under solid confinement, providing deeper insight into the structural behavior of topologically distinct polymers near interfaces. This work highlights the potential for tuning interfacial composition and properties in polymer blends through topological design, with implications for advanced coatings, membranes, and nanostructured materials. 
    more » « less
  5. Abstract Garnet is a common metamorphic and igneous mineral with extensive solid solution that can be stable to mantle depths ≥400 km. High-T and/or high-P garnet may contain oriented lamellae of other minerals, most commonly simple oxides (e.g., rutile, ilmenite), apatite, and, in ultrahigh-P cases, silicates including pyroxene and amphibole. Lamellae have classically been considered to be precipitation features preserving a record of former garnet chemistry richer in the lamellae nutrients (e.g., Ti4+). Such microtextural origins in precipitation systems (e.g., alloys) have long been studied via the crystallographic orientation relationships (COR) that form between a host and a separating phase, and by the shape-preferred orientation (SPO) of the lamellae. Recently, however, alternative hypotheses to precipitation have been suggested that require emplacement of lamellae in garnet by fluids, or co-growth, overgrowth, or inheritance mechanisms. These hypotheses posit that lamellae cannot be used to study former garnet chemistry. Moreover, they predict that lamellae phases, SPO, and COR should differ widely between localities, as lamellae formation will be controlled by various local rock-specific factors such as fluid presence, fluid chemistry, or mineral growth sequence. On the other hand, if lamellae characteristics are largely consistent between localities, it likely reflects control by precipitation energetics, rather than external factors. There have been few comparative COR studies in geologic systems, but the integrative assessment of COR, SPO, and lamellae assemblages should fingerprint lamellae growth process. To test the precipitation and alternative hypotheses, we collected large electron backscatter diffraction (EBSD) data sets for rutile, ilmenite, and apatite lamellae in garnet from the Brimfield Schist, Connecticut (≥1000 °C metamorphism; Central Maine Terrane, U.S.A.). We analyzed these data alongside published EBSD data for rutile, ilmenite, and corundum from metapegmatites metamorphosed in the eclogite facies from the Austrian Alps (Griffiths et al. 2016). The apatite data set is the first of its kind, and reveals that apatite preferentially aligns its close-packed direction parallel to that of garnet (c-axisapatite//<111>garnet). We also recognize a rutile-garnet COR related to those in meteorites with Widmanstätten patterns that are unequivocal products of exsolution. This is the first identification of direct similarities between silicate-oxide and metal-metal COR of which we are aware. Significantly, this rutile-garnet COR is found in diverse geologic settings including Connecticut and Idaho (U.S.A.), Austria, Germany, Greece, and China over a broad range of bulk-rock compositions. Results for all lamellae minerals show that COR are largely consistent between localities and, furthermore, are shared between apatite, ilmenite, and corundum. Moreover, between 70% and 95% of lamellae have COR and there is a dominant COR for each lamellae phase. Calculations show that d-spacing ratios of host-lamellae pairs can successfully predict the most commonly observed specific COR (those COR with two or more axial alignments with the host). These results, especially similarity of COR from markedly different geologic settings and a low diversity of lamellae minerals, are fully consistent with lamellae formation by precipitation (likely via exsolution). In contrast, the alternative hypotheses remain unsupported by COR results as well as by mineralogical and petrological evidence. Lamellae with similar traits as those in this work should thus be considered precipitates formed during unmixing of garnet compositions originally stable at elevated or extreme pressures and temperatures. 
    more » « less