skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity
While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.  more » « less
Award ID(s):
1831319
PAR ID:
10566019
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
Orti, Guillermo
Publisher / Repository:
Molecular Phylogenetics & Evolution
Date Published:
Journal Name:
Molecular Phylogenetics and Evolution
Edition / Version:
1.0
Volume:
198
Issue:
C
ISSN:
1055-7903
Page Range / eLocation ID:
108116
Subject(s) / Keyword(s):
Demographic changeIsolation by distanceLandscape geneticsMachine learningPhylogeographyConvolutional neural networks
Format(s):
Medium: X Size: 2.6MB Other: .pdf
Size(s):
2.6MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard speciesNorops brasiliensis(Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation inN. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets. 
    more » « less
  2. Corbett-Detig, Russell (Ed.)
    Abstract Comparative population genomics is an ascendant field using genomic comparisons between species to draw inferences about forces regulating genetic variation. Comparative phylogeography, by contrast, focuses on the shared lineage histories of species codistributed geographically and is decidedly organismal in perspective. Comparative phylogeography is approximately 35 years old, and, by some metrics, is showing signs of reduced growth. Here, we contrast the goals and methods of comparative population genomics and comparative phylogeography and argue that comparative phylogeography offers an important perspective on evolutionary history that succeeds in integrating genomics with landscape evolution in ways that complement the suprageographic perspective of comparative population genomics. Focusing primarily on terrestrial vertebrates, we review the history of comparative phylogeography, its milestones and ongoing conceptual innovations, its increasingly global focus, and its status as a bridge between landscape genomics and the process of speciation. We also argue that, as a science with a strong “sense of place,” comparative phylogeography offers abundant “place-based” educational opportunities with its focus on geography and natural history, as well as opportunities for collaboration with local communities and indigenous peoples. Although comparative phylogeography does not yet require whole-genome sequencing for many of its goals, we conclude that it nonetheless plays an important role in grounding our interpretation of genetic variation in the fundamentals of geography and Earth history. 
    more » « less
  3. Lozier, J (Ed.)
    Comparative phylogeographic studies can distinguish between idiosyncratic and community-wide responses to past environmental change. However, to date, the impacts of species interactions have been largely overlooked. Here we used non-genetic data to characterize two competing scenarios about expected levels of congruence among five deadwood-associated (saproxylic) invertebrate species (i.e., a wood-feeding cockroach, termite, and beetle; a predatory centipede, and a detritivorous millipede) from the southern Appalachian Mountains—a globally recognized center of endemism. Under one scenario, abiotic factors primarily drove species’ responses, with predicted congruence based on the spatial overlap of climatically stable habitat areas estimated for each species via ecological niche modeling. The second scenario considered biotic factors to be most influential, with proxies for species interactions used to predict congruence. Analyses of mitochondrial and nuclear DNA sequences focused on four axes of comparison: the number and geographic distribution of distinct spatial-genetic clusters, phylogeographic structure, changes in effective population size, and historical gene flow dynamics. Overall, we found stronger support for the ecological co-associations scenario, suggesting an important influence of biotic factors in constraining or facilitating species’ responses to Pleistocene climatic cycles. However, there was an imperfect fit between predictions and outcomes of genetic data analyses. Thus, while thought-provoking, conclusions remain tentative until additional data on species interactions becomes available. Ultimately, the approaches presented here advance comparative phylogeography by expanding the scope of inferences beyond solely considering abiotic drivers, which we believe is too simplistic. This work also provides conservation-relevant insights into the evolutionary history of a functionally important ecological community. 
    more » « less
  4. Abstract Genetic connectivity lies at the heart of evolutionary theory, and landscape genetics has rapidly advanced to understand how gene flow can be impacted by the environment. Isolation by landscape resistance, often inferred through the use of circuit theory, is increasingly identified as being critical for predicting genetic connectivity across complex landscapes. Yet landscape impediments to migration can arise from fundamentally different processes, such as landscape gradients causing directional migration and mortality during migration, which can be challenging to address. Spatial absorbing Markov chains (SAMC) have been introduced to understand and predict these (and other) processes affecting connectivity in ecological settings, but the relationship of this framework to landscape genetics remains unclear. Here, we relate the SAMC to population genetics theory, provide simulations to interpret the extent to which the SAMC can predict genetic metrics and demonstrate how the SAMC can be applied to genomic data using an example with an endangered species, the Panama City crayfish Procambarus econfinae , where directional migration is hypothesized to occur. The use of the SAMC for landscape genetics can be justified based on similar grounds to using circuit theory, as we show how circuit theory is a special case of this framework. The SAMC can extend circuit‐theoretic connectivity modelling by quantifying both directional resistance to migration and acknowledging the difference between migration mortality and resistance to migration. Our empirical example highlights that the SAMC better predicts population structure than circuit theory and least‐cost analysis by acknowledging asymmetric environmental gradients (i.e. slope) and migration mortality in this species. These results provide a foundation for applying the SAMC to landscape genetics. This framework extends isolation‐by‐resistance modelling to account for some common processes that can impact gene flow, which can improve predicting genetic connectivity across complex landscapes. 
    more » « less
  5. Despite an increased focus on multiscale relationships and interdisciplinary integration, few macroecological studies consider the contribution of genetic-based processes to landscape-scale patterns. We test the hypothesis that tree genetics, climate, and geography jointly drive continental-scale patterns of community structure, using genome-wide SNP data from a broadly distributed foundation tree species (Populus fremontii S. Watson) and two dependent communities (leaf-modifying arthropods and fungal endophytes) spanning southwestern North America. Four key findings emerged: (1) Tree genetic structure was a significant predictor for both communities; however, the strength of influence was both scale- and community-dependent. (2) Tree genetics was the primary driver for endophytes, explaining 17% of variation in continental-scale community structure, whereas (3) climate was the strongest predictor of arthropod structure (24%). (4) Power to detect tree genotype—community phenotype associations changed with scale of genetic organization, increasing from individuals to populations to ecotypes, emphasizing the need to consider nonstationarity (i.e., changes in the effects of factors on ecological processes across scales) when inferring macrosystem properties. Our findings highlight the role of foundation tree species as drivers of macroscale community structure and provide macrosystems ecology with a theoretical framework for linking fine- and intermediate-scale genetic processes to landscape-scale patterns. Management of the genetic diversity harbored within foundation species is a critical consideration for conserving and sustaining regional biodiversity. 
    more » « less