Abstract Plant diversity and plant–consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosystem respiration (Re) and net ecosystem exchange (NEE). Increasing plant diversity increased plant biomass, GPP and Re, but NEE remained unchanged. Removing foliar fungi increased GPP and NEE, with the greatest effects at low plant diversity. After accounting for plant biomass, we found that removing foliar fungi increased mass‐specific flux rates in the low‐diversity plant communities by altering plant species composition and community‐wide foliar nitrogen content. However, this effect disappeared when soil fungi and arthropods were also removed, demonstrating that both plant diversity and interactions among consumer groups determine the ecosystem‐scale effects of plant–fungal interactions.
more »
« less
Plant growth–defense trade‐offs are general across interactions with fungal, insect, and mammalian consumers
Abstract Plants face trade‐offs between allocating resources to growth, while also defending against herbivores or pathogens. Species differences along defense trade‐off axes may promote coexistence and maintain diversity. However, few studies of plant communities have simultaneously compared defense trade‐offs against an array of herbivores and pathogens for which defense investment may differ, and even fewer have been conducted in the complex natural communities in which these interactions unfold. We tested predictions about the role of defense trade‐offs with competition and growth in diversity maintenance by tracking plant species abundance in a field experiment that removed individual consumer groups (mammals, arthropods, fungi) and added nutrients. Consistent with a growth–defense trade‐off, plant species that increased in mass in response to nutrient addition also increased when consumers were removed. This growth–defense trade‐off occurred for all consumer groups studied. Nutrient addition reduced plant species richness, which is consistent with trade‐off theory. Removing foliar fungi increased plant diversity via increased species evenness, whereas removal of other consumer groups had little effect on diversity, counter to expectations. Thus, while growth–defense trade‐offs are general across consumer groups, this trade‐off observed in wild plant communities does not necessarily support plant diversity maintenance.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10498987
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 105
- Issue:
- 5
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The resource‐availability hypothesis (RAH) and the intraspecific RAH (RAH intra ), posit that resources, (i.e. nutrients) control plant antiherbivore defenses. Both hypotheses predict that in low‐resource environments, plant growth is slow, and constitutive defense is high. In high‐resource environments, however, the RAH predicts that plant growth is fast, and constitutive defense is low, whereas the RAH intra predicts that increased resources attract more herbivores, and this intensified grazing pressure leads to high constitutive defense. Salt marshes are nutrient‐limited ecosystems threatened by eutrophication and chronic herbivory, yet we know little about how these stressors shape saltmarsh plant antiherbivore defenses, which influence trophic interactions and ecosystem resilience. We manipulated resource availability via nutrient addition and herbivory via the marsh periwinkle Littoraria irrorata , on the saltmarsh foundation species Spartina alterniflora , in mesocosms. Because plant age can also influence trait variation, we measured traits in both original and clonally‐grown new stems. Feeding assays then evaluated how treatments and plant age affected subsequent Littoraria consumption of Spartina . Nutrient addition stimulated growth, while decreasing defensive traits (e.g. fiber and silica content), following the RAH. Herbivory enhanced belowground production and increased stem diameter, yet did not induce defensive traits, contrary to our expectations. Herbivory plus nutrients increased Spartina biomass and reduced phenolics, a defensive trait, further supporting the RAH. Regardless of treatment, clonally‐grown new stems had greater variation in measured traits. Despite altered traits, however, treatments and plant age did not affect Littoraria consumption. Our results support the RAH and part of the RAH intra and suggest: 1) nutrient availability is a primary driver of plant trait change and 2) plant age controls the magnitude of trait variation in Spartina . Further, our findings indicate that eutrophic conditions may not always increase top‒down control by herbivores, and in some instances can enhance saltmarsh resilience against sea‐level rise via stimulated Spartina biomass production.more » « less
-
Plants in grasslands navigate a complex landscape of interactions including competition for resources and defense against pathogens. Foliar fungi can suppress plant growth directly through pathogenic interactions, or indirectly via host growth-defense tradeoffs. The exclusion of foliar fungi allows the reallocation of resources from defense to growth and reproduction. In addition, plants also invest photosynthates in rhizodeposition, or root exudates, which play a significant role in shaping the rhizosphere microbial community. However, it remains unclear what impact the exclusion of foliar fungi has on the allocation of resources to rhizodeposition and the composition of the rhizosphere microbial community. Using a 6-year foliar fungicide study in plots planted with 16 species of native prairie plants, we asked whether foliar fungi influence the rhizosphere microbial composition of a common prairie grass (Andropogon gerardii) and a common legume (Lespedeza capatita). We found that foliar fungicide increased aboveground biomass and season-long plant production, but did not alter root biomass, seed production, or rhizosphere microbial diversity. The magnitude of change in aboveground season-long plant production was significantly associated with the magnitude of change in the rhizosphere microbial community in paired foliar fungicide-treatedvs. control plots. These results suggest important coupling between foliar fungal infection and plant investment in rhizodeposition to modify the local soil microbial community.more » « less
-
Soil nutrients cause threefold increase in pathogen and herbivore impacts on grassland plant biomassAbstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.more » « less
-
Abstract Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.more » « less
An official website of the United States government
