skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cosmological baryon spread and impact on matter clustering in CAMELS
ABSTRACT We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $$k \sim 10\, h$$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.  more » « less
Award ID(s):
2108678 2108944
PAR ID:
10498993
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
529
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4896-4913
Size(s):
p. 4896-4913
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$. 
    more » « less
  2. ABSTRACT Hydrodynamic simulations provide a powerful, but computationally expensive, approach to study the interplay of dark matter and baryons in cosmological structure formation. Here, we introduce the EMulating Baryonic EnRichment (EMBER) Deep Learning framework to predict baryon fields based on dark matter-only simulations thereby reducing computational cost. EMBER comprises two network architectures, U-Net and Wasserstein Generative Adversarial Networks (WGANs), to predict 2D gas and H i densities from dark matter fields. We design the conditional WGANs as stochastic emulators, such that multiple target fields can be sampled from the same dark matter input. For training we combine cosmological volume and zoom-in hydrodynamical simulations from the Feedback in Realistic Environments (FIRE) project to represent a large range of scales. Our fiducial WGAN model reproduces the gas and H i power spectra within 10 per cent accuracy down to ∼10 kpc scales. Furthermore, we investigate the capability of EMBER to predict high resolution baryon fields from low resolution dark matter inputs through upsampling techniques. As a practical application, we use this methodology to emulate high-resolution H i maps for a dark matter simulation of a $$L=100\, \text{Mpc}\, h^{ -1}$$ comoving cosmological box. The gas content of dark matter haloes and the H i column density distributions predicted by EMBER agree well with results of large volume cosmological simulations and abundance matching models. Our method provides a computationally efficient, stochastic emulator for augmenting dark matter only simulations with physically consistent maps of baryon fields. 
    more » « less
  3. The baryonic physics shaping galaxy formation and evolution are complex, spanning a vast range of scales and making them challenging to model. Cosmological simulations rely on subgrid models that produce significantly different predictions. Understanding how models of stellar and active galactic nucleus (AGN) feedback affect baryon behavior across different halo masses and redshifts is essential. Using the SIMBA and IllustrisTNG suites from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, we explore the effect of parameters governing the subgrid implementation of stellar and AGN feedback. We find that while IllustrisTNG shows higher cumulative feedback energy across all halos, SIMBA demonstrates a greater spread of baryons, quantified by the closure radius and circumgalactic medium (CGM) gas fraction. This suggests that feedback in SIMBA couples more effectively to baryons and drives them more efficiently within the host halo. There is evidence that the different feedback modes are highly interrelated in these subgrid models. The parameters controlling the stellar feedback efficiency significantly impact AGN feedback, as seen in the suppression of black hole mass growth and delayed activation of AGN feedback to higher-mass halos with increasing stellar feedback efficiency in both simulations. Additionally, the AGN feedback efficiency parameters affect the CGM gas fraction at low halo masses in SIMBA, hinting at complex, nonlinear interactions between the AGN and supernova feedback modes. Overall, we demonstrate that stellar and AGN feedback are intimately interwoven, especially at low redshift, due to subgrid implementation, resulting in halo property effects that might initially seem counterintuitive. 
    more » « less
  4. Abstract The baryonic physics shaping galaxy formation and evolution are complex, spanning a vast range of scales and making them challenging to model. Cosmological simulations rely on subgrid models that produce significantly different predictions. Understanding how models of stellar and active galactic nucleus (AGN) feedback affect baryon behavior across different halo masses and redshifts is essential. Using the SIMBA and IllustrisTNG suites from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, we explore the effect of parameters governing the subgrid implementation of stellar and AGN feedback. We find that while IllustrisTNG shows higher cumulative feedback energy across all halos, SIMBA demonstrates a greater spread of baryons, quantified by the closure radius and circumgalactic medium (CGM) gas fraction. This suggests that feedback in SIMBA couples more effectively to baryons and drives them more efficiently within the host halo. There is evidence that the different feedback modes are highly interrelated in these subgrid models. The parameters controlling the stellar feedback efficiency significantly impact AGN feedback, as seen in the suppression of black hole mass growth and delayed activation of AGN feedback to higher-mass halos with increasing stellar feedback efficiency in both simulations. Additionally, the AGN feedback efficiency parameters affect the CGM gas fraction at low halo masses in SIMBA, hinting at complex, nonlinear interactions between the AGN and supernova feedback modes. Overall, we demonstrate that stellar and AGN feedback are intimately interwoven, especially at low redshift, due to subgrid implementation, resulting in halo property effects that might initially seem counterintuitive. 
    more » « less
  5. Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs between z = 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution. 
    more » « less