skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reduced hybrid survival in a migratory divide between songbirds
Abstract Migratory divides, hybrid zones between populations that use different seasonal migration routes, are hypothesised to contribute to speciation. Specifically, relative to parental species, hybrids at divides are predicted to exhibit (1) intermediate migratory behaviour and (2) reduced fitness as a result. We provide the first direct test of the second prediction here with one of the largest existing avian tracking datasets, leveraging a divide between Swainson's thrushes where the first prediction is supported. Using detection rates as a proxy for survival, our results supported the migratory divide hypothesis with lower survival rates for hybrids than parental forms. This finding was juvenile‐specific (vs. adults), suggesting selection against hybrids is stronger earlier in life. Reduced hybrid survival was not explained by selection against intermediate phenotypes or negative interactions among phenotypes. Additional work connecting specific features of migration is needed, but these patterns provide strong support for migration as an ecological driver of speciation.  more » « less
Award ID(s):
2143004
PAR ID:
10499160
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
4
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although avian hybrid zones in the Great Plains have been studied for almost 70 years, we know surprisingly little about the fitness costs to hybrids that keep these zones narrow. We compare age ratios in grosbeaks (Pheucticus ludovicianus and P. melanocephalus) and towhees (Pipilo erythropthalums and P. maculatus), two species pairs that differ in their life histories and molt schedules, to evaluate survival between hybrids and parentals. We then contrast molt and migratory divides as possible sources of selection against hybrids. Hybrid grosbeaks had 27%–33% lower survival relative to their parentals, whereas hybrid towhees had survival rates similar to parentals. Age ratio data for hybrid grosbeaks suggest high mortality in older birds, as expected if selection operates after the first year of life. This pattern is consistent with parental species of grosbeaks having contrasting molt schedules relative to migration, suggesting high mortality costs to hybrids driven by molt biology, which are expressed later in life. Contrasts in molt schedules are absent in towhees. While migratory divides may exist for towhees and grosbeaks, the low adult survival of hybrid grosbeaks suggest that molt may be an important and underappreciated source of selection maintaining this and other narrow avian hybrid zones. 
    more » « less
  2. Abstract Divergent adaptation can promote ecological speciation if hybrids have reduced fitness because they are poorly adapted to either parental niche. We tested for ecologically dependent, postzygotic isolation between two subspecies of Swainson’s thrushes, which form a migratory divide and hybrid zone in western North America. To do this, we translocated backcrossed and admixed birds from the hybrid zone into the range of each subspecies in the beginning of fall migration. We estimated a proxy for their survival on migration and migratory behaviour using automated radio tracking. Apparent survival of birds in the two environments did not depend on their genomic ancestry, suggesting that Swainson’s thrushes’ divergent adaptation to different fall migration routes does not fit the classic model of ecological speciation. We propose an alternate scenario where ecological selection on migration may interact with intrinsic maladaptation in hybrids to cause hybrid survival on migration. By translocating birds from the same genomic backgrounds into different environments, our experiment also allowed us to distinguish between the effects of environmental relative to genetic contributors to their migratory behaviour. We found evidence that both genetic and environmental factors influence migratory behaviour, as an effect of genomic ancestry on initial migratory trajectories depended on the start location for migration but birds ultimately followed expected routes given their genomic ancestries. 
    more » « less
  3. Abstract Extrinsic postzygotic isolation, where hybrids experience reductions in fitness due to a mismatch with their environment, is central to speciation. Knowledge of genetic variants that underlie extrinsic isolation is crucial for understanding the early stages of speciation. Differences in seasonal migration are strong candidates for extrinsic isolation (e.g., if hybrids take intermediate and inferior routes compared to pure forms). Here, we used a hybrid zone between two subspecies of the songbird Swainson’s thrush (Catharus ustulatus) with different migratory routes and tests for viability selection (locus-specific changes in interspecific heterozygosity and ancestry mismatch across age classes) to gain insight into the genetic basis of extrinsic isolation. Using data from over 900 individuals we find strong evidence for viability selection on both interspecific heterozygosity and ancestry mismatch at loci linked to migration. Much of this selection was dependent on genome-wide ancestry; as expected, a subset of hybrids exhibited reduced viability, but remarkably, another subset appears to fill an unoccupied fitness peak within the species, exhibiting higher viability than even parental forms. Many of the variants that influence hybrid viability appear to occur in structural variants, including a putative pericentric inversion. Our study emphasizes the importance of epistatic interactions and structural variants in speciation. 
    more » « less
  4. Abstract Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration – an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns – no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation. 
    more » « less
  5. Abstract Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant’s woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack–Jolly–Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids. 
    more » « less