skip to main content

This content will become publicly available on December 10, 2024

Title: Private Everlasting Prediction
A private learner is trained on a sample of labeled points and generates a hypothesis that can be used for predicting the labels of newly sampled points while protecting the privacy of the training set [Kasiviswannathan et al., FOCS 2008]. Past research uncovered that private learners may need to exhibit significantly higher sample complexity than non-private learners as is the case of learning of one-dimensional threshold functions [Bun et al., FOCS 2015, Alon et al., STOC 2019]. We explore prediction as an alternative to learning. A predictor answers a stream of classification queries instead of outputting a hypothesis. Earlier work has considered a private prediction model with a single classification query [Dwork and Feldman, COLT 2018]. We observe that when answering a stream of queries, a predictor must modify the hypothesis it uses over time, and in a manner that cannot rely solely on the training set. We introduce private everlasting prediction taking into account the privacy of both the training set and the (adaptively chosen) queries made to the predictor. We then present a generic construction of private everlasting predictors in the PAC model. The sample complexity of the initial training sample in our construction is quadratic (up to polylog factors) in the VC dimension of the concept class. Our construction allows prediction for all concept classes with finite VC dimension, and in particular threshold functions over infinite domains, for which (traditional) private learning is known to be impossible.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
proceedings of 37th NeurIPS 2023
Date Published:
Journal Name:
proceedings of 37th NeurIPS 2023
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider learning problems where the training set consists of two types of examples: private and public. The goal is to design a learning algorithm that satisfies differential privacy only with respect to the private examples. This setting interpolates between private learning (where private) and classical learning (where all examples are public). We study the limits of learning in this setting in terms of private and public sample complexities. We show that any hypothesis class of VC-dimension d can be agnostically learned up to an excess error of α using only (roughly) d/α public examples and d/α2 private labeled examples. This result holds even when the public examples are unlabeled. This gives a quadratic improvement over the standard d/α2 upper bound on the public sample complexity (where private examples can be ignored altogether if the public examples are labeled). Furthermore, we give a nearly matching lower bound, which we prove via a generic reduction from this setting to the one of private learning without public data. 
    more » « less
  2. null (Ed.)
    We prove that every concept class with finite Littlestone dimension can be learned by an (approximate) differentially-private algorithm. This answers an open question of Alon et al. (STOC 2019) who proved the converse statement (this question was also asked by Neel et al. (FOCS 2019)). Together these two results yield an equivalence between online learnability and private PAC learnability. We introduce a new notion of algorithmic stability called “global stability” which is essential to our proof and may be of independent interest. We also discuss an application of our results to boosting the privacy and accuracy parameters of differentially-private learners. 
    more » « less
  3. Belkin, M. ; Kpotufe, S. (Ed.)
    We study the problem of robust learning under clean-label data-poisoning attacks, where the at-tacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algorithm into making mistakes on specific test instances at test time. The learning goal is to minimize the attackable rate (the probability mass of attackable test instances), which is more difficult than optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can achieve the optimal dependence on ε in its PAC sample complexity, i.e., O(1/ε). On the other hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for linear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable when the data distribution has zero margin and is robustly learnable in the case of positive margin but requires sample complexity exponential in the dimension. For a general hypothesis class with bounded VC dimension, if the attacker is limited to add at most t >0 poison examples, the optimal robust learning sample complexity grows almost linearly with t. 
    more » « less
  4. Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today's tech-dominated world, and current theoretical techniques requiring exponential sample complexity and complicated improper learning rules fall far from answering the need. In this work we study the fundamental paradigm of (robust) empirical risk minimization (RERM), a simple process in which the learner outputs any hypothesis minimizing its training error. RERM famously fails to robustly learn VC classes (Montasser et al., 2019a), a bound we show extends even to `nice' settings such as (bounded) halfspaces. As such, we study a recent relaxation of the robust model called tolerant robust learning (Ashtiani et al., 2022) where the output classifier is compared to the best achievable error over slightly larger perturbation sets. We show that under geometric niceness conditions, a natural tolerant variant of RERM is indeed sufficient for γ-tolerant robust learning VC classes over ℝd, and requires only Õ (VC(H)dlogDγδϵ2) samples for robustness regions of (maximum) diameter D. 
    more » « less
  5. Practical and pervasive needs for robustness and privacy in algorithms have inspired the design of online adversarial and differentially private learning algorithms. The primary quantity that characterizes learnability in these settings is the Littlestone dimension of the class of hypotheses [Alon et al., 2019, Ben-David et al., 2009]. This characterization is often interpreted as an impossibility result because classes such as linear thresholds and neural networks have infinite Littlestone dimension. In this paper, we apply the framework of smoothed analysis [Spielman and Teng, 2004], in which adversarially chosen inputs are perturbed slightly by nature. We show that fundamentally stronger regret and error guarantees are possible with smoothed adversaries than with worst-case adversaries. In particular, we obtain regret and privacy error bounds that depend only on the VC dimension and the bracketing number of a hypothesis class, and on the magnitudes of the perturbations. 
    more » « less