skip to main content


This content will become publicly available on May 1, 2025

Title: Mapping deformation and dissipation during fracture of soft viscoelastic solid
Energy dissipation around a propagating crack is the primary mechanism for the enhanced fracture toughness in viscoelastic solids. Such dissipation is spatially non-uniform and is highly coupled to the crack propagation process due to the history-dependent nature of viscoelasticity. We present an experimental approach to map the dissipation field during crack propagation in soft viscoelastic solid. Specifically, we track randomly distributed tracer particles to measure the evolving deformation field. The measured deformation field is then put into a nonlinear constitutive model to determine the dissipation field. Our methodology was used to investigate the deformation and dissipation fields around a propagating crack in a Polyampholyte (PA) hydrogel. The deformation field measurements allowed us to assess whether the commonly assumed translational invariance in viscoelastic fracture theories holds true in practical experiments. Furthermore, by combining the obtained deformation fields with a nonlinear viscoelastic model, we captured the complete history of the dissipation field during crack propagation. We found that dissipation occurred even at material points that are a few millimeters away from the crack tip. The mapped dissipation field also enabled the separate determination of the intrinsic and dissipative components of fracture toughness for the viscoelastic hydrogel.  more » « less
Award ID(s):
1903308
NSF-PAR ID:
10499371
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of the Mechanics and Physics of Solids
Volume:
186
Issue:
C
ISSN:
0022-5096
Page Range / eLocation ID:
105595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Toughness of soft materials such as elastomers and gels depends on their ability to dissipate energy and to reduce stress concentration at the crack tip. The primary energy dissipation mechanism is viscoelasticity. Most analyses and models of fracture are based on linear viscoelastic theory (LVT) where strains are assumed to be small and the relaxation mechanisms are independent of stress or strain history. A well-known paradox is that the size of the dissipative zone predicted by LVT is unrealistically small. Here we use a physically based nonlinear viscoelastic model to illustrate why the linear theory breaks down. Using this nonlinear model and analogs of crack problems, we give a plausible resolution to this paradox. In our model, viscoelasticity arises from the breaking and healing of physical cross-links in the polymer network. When the deformation is small, the kinetics of bond breaking and healing are independent of the strain/stress history and the model reduces to the standard linear theory. For large deformations, localized bond breaking damages the material near the crack tip, reducing stress concentration and dissipating energy at the same time. The damage zone size is a new length scale which depends on the strain required to accelerate bond breaking kinetics. These effects are illustrated by considering two cases with stress concentrations: the evolution of spherical damage in a viscoelastic body subjected to internal pressure, and a zero degree peel test. 
    more » « less
  2. - (Ed.)
    Rubber-like materials have a broad scope of applications due to their unique properties like high stretchability and increased toughness. Hence, computational models for simulating their fracture behavior are paramount for designing them against failures. In this study, the phase field fracture approach is integrated with a multiscale polymer model for predicting the fracture behavior in elastomers. At the microscale, damaged polymer chains are modeled to be made up of a number of elastic chain segments pinned together. Using the phase field approach, the damage in the chains is represented using a continuous variable. Both the bond stretch internal energy and the entropic free energy of the chain are assumed to drive the damage, and the advantages of this assumption are expounded. A framework for utilizing the non-affine microsphere model for damaged systems is proposed by considering the minimization of a hypothetical undamaged free energy, ultimately connecting the chain stretch to the macroscale deformation gradient. At the macroscale, a thermodynamically consistent formulation is derived in which the total dissipation is assumed to be mainly due to the rupture of molecular bonds. Using a monolithic scheme, the proposed model is numerically implemented and the resulting three-dimensional simulation predictions are compared with existing experimental data. The capability of the model to qualitatively predict the propagation of complex crack paths and quantitatively estimate the overall fracture behavior is verified. Additionally, the effect of the length scale parameter on the predicted fracture behavior is studied for an inhomogeneous system. 
    more » « less
  3. Abstract

    Soft fiber‐reinforced polymers (FRPs), consisting of rubbery matrices and rigid fabrics, are widely utilized in industry because they possess high specific strength in tension while allowing flexural deformation under bending or twisting. Nevertheless, existing soft FRPs are relatively weak against crack propagation due to interfacial delamination, which substantially increases their risk of failure during use. In this work, a class of soft FRPs that possess high specific strength while simultaneously showing extraordinary crack resistance are developed. The strategy is to synthesize tough viscoelastic matrices from acrylate monomers in the presence of woven fabrics, which generates soft composites with a strong interface and interlocking structure. Such composites exhibit fracture energy,Γ, of up to 2500 kJ m−2, exceeding the toughest existing materials. Experimental elucidation shows that the fracture energy obeys a simple relation,Γ = W · lT, whereWis the volume‐weighted average of work of extension at fracture of the two components andlTis the force transfer length that scales with the square root of fiber/matrix modulus ratio. SuperiorΓis achieved through a combination of extraordinarily largelT(10–100 mm), resulting from the extremely high fiber/matrix modulus ratios (104–105), and the maximized energy dissipation density,W. The elucidated quantitative relationship provides guidance toward the design of extremely tough soft composites.

     
    more » « less
  4. Prior to fracture, a polyacrylamide hydrogel has a stress-stretch curve of nearly perfect elasticity, but it has been suggested that an inelastic zone exists around a crack tip. This inelastic zone, however, has never been observed directly in a polyacrylamide hydrogel. Here we identify the inelastic zone using digital image correlation (DIC). We prepare a polyacrylamide hydrogel with a precut crack. While a sample of the hydrogel is stretched, the speckle patterns are recorded using a microscope or a camera, with pixel size 2.3 μm and 22.7 μm, respectively. The speckle patterns recorded by the microscope and camera are processed using the DIC software, and merged to provide the deformation field over the entire sample. The measured field of deformation is used to calculate the field of energy density according to the neo-Hookean model. When the body is perfectly elastic, the field of energy density around the crack tip is inversely proportional to the distance from the crack tip. The difference between the measured field and the predicted elastic field identifies the inelastic zone. The measured size of the inelastic zone is ∼ 0.6 mm. We further confirm that, when a sample is much larger than the inelastic zone, an annulus exists, in which the elastic crack tip field prevails. 
    more » « less
  5. null (Ed.)
    Recent theoretical and computational progress has led to unprecedented understanding of symmetry-breaking instabilities in 2D dynamic fracture. At the heart of this progress resides the identification of two intrinsic, near crack tip length scales — a nonlinear elastic length scale ℓ and a dissipation length scale ξ — that do not exist in Linear Elastic Fracture Mechanics (LEFM), the classical theory of cracks. In particular, it has been shown that at a propagation velocity v of about 90% of the shear wave-speed, cracks in 2D brittle materials undergo an oscillatory instability whose wavelength varies linearly with ℓ, and at larger loading levels (corresponding to yet higher propagation velocities), a tip-splitting instability emerges, both in agreements with experiments. In this paper, using phase-field models of brittle fracture, we demonstrate the following properties of the oscillatory instability: (i) It exists also in the absence of near-tip elastic nonlinearity, i.e. in the limit ℓ→0, with a wavelength determined by the dissipation length scale ξ. This result shows that the instability crucially depends on the existence of an intrinsic length scale associated with the breakdown of linear elasticity near crack tips, independently of whether the latter is related to nonlinear elasticity or to dissipation. (ii) It is a supercritical Hopf bifurcation, featuring a vanishing oscillations amplitude at onset. (iii) It is largely independent of the phenomenological forms of the degradation functions assumed in the phase-field framework to describe the cohesive zone, and of the velocity-dependence of the fracture energy Γ(v) that is controlled by the dissipation time scale in the Ginzburg-Landau-type evolution equation for the phase-field. These results substantiate the universal nature of the oscillatory instability in 2D. In addition, we provide evidence indicating that the tip-splitting instability is controlled by the limiting rate of elastic energy transport inside the crack tip region. The latter is sensitive to the wave-speed inside the dissipation zone, which can be systematically varied within the phase-field approach. Finally, we describe in detail the numerical implementation scheme of the employed phase-field fracture approach, allowing its application in a broad range of materials failure problems. 
    more » « less