skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A non-trivial PT-symmetric continuum Hamiltonian and its eigenstates and eigenvalues
In this paper, a non-trivial system governed by a continuum PT-symmetric Hamiltonian is discussed. We show that this Hamiltonian is iso-spectral to the simple harmonic oscillator. We find its eigenfunctions and the path in the complex plane along which these functions form an orthonormal set. We also find the hidden symmetry operator, C, for this system. All calculations are performed analytically and without approximation.  more » « less
Award ID(s):
2102914
PAR ID:
10499398
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Mathematical Physics
Volume:
63
Issue:
7
ISSN:
0022-2488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract M. Kruskal showed that each continuous-time nearly periodic dynamical system admits a formalU(1)-symmetry, generated by the so-called roto-rate. When the nearly periodic system is also Hamiltonian, Noether’s theorem implies the existence of a corresponding adiabatic invariant. We develop a discrete-time analog of Kruskal’s theory. Nearly periodic maps are defined as parameter-dependent diffeomorphisms that limit to rotations along aU(1)-action. When the limiting rotation is non-resonant, these maps admit formalU(1)-symmetries to all orders in perturbation theory. For Hamiltonian nearly periodic maps on exact presymplectic manifolds, we prove that the formalU(1)-symmetry gives rise to a discrete-time adiabatic invariant using a discrete-time extension of Noether’s theorem. When the unperturbedU(1)-orbits are contractible, we also find a discrete-time adiabatic invariant for mappings that are merely presymplectic, rather than Hamiltonian. As an application of the theory, we use it to develop a novel technique for geometric integration of non-canonical Hamiltonian systems on exact symplectic manifolds. 
    more » « less
  2. We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian, which is known to quickly create Heisenberg limit scaled entangled states. For these states we show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation determined by the quantum Cramér-Rao bound. An example experimental realization of the periodically driven scheme is discussed with the potential to quickly generate momentum entanglement in a recently described experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and find that our squeezing protocol can be more robust than the previous realization of OAT. Published by the American Physical Society2024 
    more » « less
  3. Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of quantum states (time-evolution operators) generated by the evolution, and investigate the conditions necessary for them to be statistically indistinguishable from uniformly random states (operators) in the Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical —indistinguishability up to some large but finite moment—can already be achieved by a quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity and chaos from the lens of quantum information. Published by the American Physical Society2024 
    more » « less
  4. Some topological features of multisite Hamiltonians consisting of harmonic potential surfaces with constant site-to-site couplings are discussed. Even in the absence of Duschinsky rotation, such a Hamiltonian assumes the system-bath form only if severe constraints exist. The simplest case of a common bath that couples to all sites is realized when the potential minima are collinear. The bath reorganization energy increases quadratically with site distance in this case. Another frequently encountered situation involves exciton-vibration coupling in molecular aggregates, where the intramolecular normal modes of the monomers give rise to local harmonic potentials. In this case, the reorganization energy accompanying excitation transfer is independent of site-to-site separation, thus this situation cannot be described by the usual system-bath Hamiltonian. A vector system-bath representation is introduced, which brings the exciton-vibration Hamiltonian in system-bath form. In this, the system vectors specify the locations of the potential minima, which in the case of identical monomers lie on the vertices of a regular polyhedron. By properly choosing the system vectors, it is possible to couple each bath to one or more sites and to specify the desired initial density. With a collinear choice of system vectors, the coupling reverts to the simple form of a common bath. The compact form of the vector system-bath coupling generalizes the dissipative tight-binding model to account for local, correlated, and common baths. The influence functional for the vector system-bath Hamiltonian is obtained in a compact and simple form. 
    more » « less
  5. We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein–Tavis–Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors. These two theoretical approaches are general and can be applied to any trajectory-based non-adiabatic quantum dynamics methods. We apply these two techniques with our previously developed Lindblad-partially linearized density matrix approach to simulate the linear absorption spectra of the HTC model system, with both inhomogeneous site energy disorders and dipolar orientational disorders. Our numerical results agree well with the previous analytic and numerical work. 
    more » « less