skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Geological insights from the newly discovered granite of Sif Island between Thwaites and Pine Island glaciers
Abstract Large-scale geological structures have controlled the long-term development of the bed and thus the flow of the West Antarctic Ice Sheet (WAIS). However, complete ice cover has obscured the age and exact positions of faults and geological boundaries beneath Thwaites Glacier and Pine Island Glacier, two major WAIS outlets in the Amundsen Sea sector. Here, we characterize the only rock outcrop between these two glaciers, which was exposed by the retreat of slow-flowing coastal ice in the early 2010s to form the new Sif Island. The island comprises granite, zircon U-Pb dated to ~177–174 Ma and characterized by initial ɛNd,87Sr/86Sr and ɛHfisotope compositions of -2.3, 0.7061 and -1.3, respectively. These characteristics resemble Thurston Island/Antarctic Peninsula crustal block rocks, strongly suggesting that the Sif Island granite belongs to this province and placing the crustal block's boundary with the Marie Byrd Land province under Thwaites Glacier or its eastern shear margin. Low-temperature thermochronological data reveal that the granite underwent rapid cooling following emplacement, rapidly cooled again at ~100–90 Ma and then remained close to the Earth's surface until present. These data help date vertical displacement across the major tectonic structure beneath Pine Island Glacier to the Late Cretaceous.  more » « less
Award ID(s):
2317097 1917176
PAR ID:
10499410
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Antarctic Science
ISSN:
0954-1020
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The catchments of Pine Island Glacier and Thwaites Glacier in the Amundsen Sea Embayment are two of the largest, most rapidly changing, and potentially unstable sectors of the West Antarctic Ice Sheet. They are also neighboring outlets, separated by the topographically unconfined eastern shear margin of Thwaites Glacier and the southwest tributary of Pine Island Glacier. This tributary begins just downstream of the eastern shear margin and flows into the Pine Island ice shelf. As a result, it is a potential locus of interaction between the two glaciers and could result in cross-catchment feedback during the retreat of either. Here, we analyze relative basal reflectivity profiles from three radar sounding survey lines collected using the UTIG HiCARS radar system in 2004 and CReSIS MCoRDS radar system in 2012 and 2014 to investigate the extent and character of ocean access beneath the southwest tributary. These profiles provide evidence of ocean access ~12 km inland of the 1992–2011 InSAR-derived grounding line by 2014, suggesting either retreat since 2011 or the intrusion of ocean water kilometers inland of the grounding line. 
    more » « less
  2. Abstract The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross‐basin analysis that investigates the basal conditions across the Pine Island‐Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from −24.8 to +37.4 dB with the highest values beneath fast‐flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along‐flow. Together, these findings highlight the potential for joint airborne radar analysis with ground‐based seismic and geomorphological observations to understand variations in the bed properties and cross‐catchment interactions of ice streams and outlet glaciers. 
    more » « less
  3. Abstract We have located 117 previously undetected seismic events mainly occurring between 2015 and 2017 that originated from glacial, tectonic, and volcanic processes in central West Antarctica using data recorded on Polar Earth Observing Network (POLENET/ANET) and UK Antarctic Network (UKANET) seismic stations. The seismic events, with local magnitudes (ML) ranging from 1.1 to 3.5, are predominantly clustered in four geographic regions; the Ellsworth Mountains, Thwaites Glacier, Pine Island Glacier, and Mount Takahe. Eighteen of the events are in the Ellsworth Mountains and can be attributed to a mixture of glacial and tectonic processes. The largest event noted in this study was a mid‐crustal (∼19 km focal depth;ML3.5) normal mechanism earthquake beneath Thwaites Glacier. We also located 91 glacial events near the grounding zones of Thwaites Glacier and Pine Island Glacier that are predominantly associated with time periods of significant calving activity. Eight events, likely arising from volcano‐tectonic processes, occurred beneath Mount Takahe. Using Pn travel times from the seismic events, we find laterally variable uppermost mantle structure in central West Antarctica. On average, the Ellsworth Mountains are underlain by a faster mantle lid (VPn = ∼8.4 km/s) compared to the Amundsen Sea Embayment region (VPn = ∼8.1 km/s). Within the Amundsen Sea Embayment itself, we find mantle lid velocities ranging from ∼8.05 to 8.18 km/s. Laterally heterogeneous uppermost mantle structure, indicative of variable thermal and rheological structure, likely influences both geothermal heat flux and glacial isostatic adjustment spatial patterns and rates within central West Antarctica. 
    more » « less
  4. Abstract West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans. 
    more » « less
  5. Key Points Using airborne radar, we trace four isochronous internal reflecting horizons over Pine Island Glacier, West Antarctica Isochrone ages calculated using the WAIS Divide ice core and a 1‐D model are 2.31–2.92, 4.72 ± 0.28, 6.94 ± 0.31, and 16.50 ± 0.79 ka We show that these isochrones are widespread across Pine Island Glacier and extend into neighboring Weddell and Amundsen Sea regions 
    more » « less