Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Constraining past West Antarctic Ice Sheet (WAIS) change helps validate numerical models simulating future ice sheet dynamics. Following rapid deglaciation during the mid‐Holocene, ice near Thwaites Glacier was ∼35 m thinner than present; however, the timing of ice regrowth to its present configuration remains unknown. To fill this knowledge gap, we present cosmogenic nuclide exposure ages of cobbles from the surface of a moraine situated between Thwaites and Pope glaciers. We infer that the moraine formed and stabilized in the Late Holocene (∼1.4 ka) when a small glacier thickened. We also present a novel reconstruction of WAIS volume constrained by sea‐level data, which demonstrates that moraine formation coincided with a large‐scale WAIS readvance. Our new geologic constraints will help inform models of the solid Earth response to surface mass loading, improving our understanding of ice sheet dynamics in a vulnerable part of WAIS.more » « less
-
Abstract Pine Island Glacier, West Antarctica, is the largest Antarctic contributor to global sea-level rise and is vulnerable to rapid retreat, yet our knowledge of its deglacial history since the Last Glacial Maximum is based largely on marine sediments that record a retreat history ending in the early Holocene. Using a suite of 10Be exposure ages from onshore glacial deposits directly adjacent to Pine Island Glacier, we show that this major glacier thinned rapidly in the early to mid-Holocene. Our results indicate that Pine Island Glacier was at least 690 m thicker than present prior to ca. 8 ka. We infer that the rapid thinning detected at the site farthest downstream records the arrival and stabilization of the retreating grounding line at that site by 8–6 ka. By combining our exposure ages and the marine record, we extend knowledge of Pine Island Glacier retreat both spatially and temporally: to 50 km from the modern grounding line and to the mid-Holocene, providing a data set that is important for future numerical ice-sheet model validation.more » « less
-
Abstract The rapidly retreating Thwaites and Pine Island glaciers together dominate present-day ice loss from the West Antarctic Ice Sheet and are implicated in runaway deglaciation scenarios. Knowledge of whether these glaciers were substantially smaller in the mid-Holocene and subsequently recovered to their present extents is important for assessing whether current ice recession is irreversible. Here we reconstruct relative sea-level change from radiocarbon-dated raised beaches at sites immediately seawards of these glaciers, allowing us to examine the response of the earth to loading and unloading of ice in the Amundsen Sea region. We find that relative sea level fell steadily over the past 5.5 kyr without rate changes that would characterize large-scale ice re-expansion. Moreover, current bedrock uplift rates are an order of magnitude greater than the rate of long-term relative sea-level fall, suggesting a change in regional crustal unloading and implying that the present deglaciation may be unprecedented in the past ~5.5 kyr. While we cannot preclude minor grounding-line fluctuations, our data are explained most easily by early Holocene deglaciation followed by relatively stable ice positions until recent times and imply that Thwaites and Pine Island glaciers have not been substantially smaller than present during the past 5.5 kyr.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Large-scale geological structures have controlled the long-term development of the bed and thus the flow of the West Antarctic Ice Sheet (WAIS). However, complete ice cover has obscured the age and exact positions of faults and geological boundaries beneath Thwaites Glacier and Pine Island Glacier, two major WAIS outlets in the Amundsen Sea sector. Here, we characterize the only rock outcrop between these two glaciers, which was exposed by the retreat of slow-flowing coastal ice in the early 2010s to form the new Sif Island. The island comprises granite, zircon U-Pb dated to ~177–174 Ma and characterized by initial ɛNd,87Sr/86Sr and ɛHfisotope compositions of -2.3, 0.7061 and -1.3, respectively. These characteristics resemble Thurston Island/Antarctic Peninsula crustal block rocks, strongly suggesting that the Sif Island granite belongs to this province and placing the crustal block's boundary with the Marie Byrd Land province under Thwaites Glacier or its eastern shear margin. Low-temperature thermochronological data reveal that the granite underwent rapid cooling following emplacement, rapidly cooled again at ~100–90 Ma and then remained close to the Earth's surface until present. These data help date vertical displacement across the major tectonic structure beneath Pine Island Glacier to the Late Cretaceous.more » « less
-
Cosmogenic-nuclide concentrations in subglacial bedrock cores show that theWest Antarctic Ice Sheet (WAIS) at a site between Thwaites and Pope glaciers was at least 35m thinner than present in the past several thousand years and then subsequently thickened. This is important because of concern that present thinning and grounding line retreat at these and nearby glaciers in the Amundsen Sea Embayment may irreversibly lead to deglaciation of significant portions of the WAIS, with decimeter- to meter-scale sea level rise within decades to centuries. A past episode of ice sheet thinning that took place in a similar, although not identical, climate was not irreversible.We propose that the past thinning– thickening cycle was due to a glacioisostatic rebound feedback, similar to that invoked as a possible stabilizing mechanism for current grounding line retreat, in which isostatic uplift caused by Early Holocene thinning led to relative sea level fall favoring grounding line advance.more » « less
-
Abstract. Evidence for the timing and pace of past grounding lineretreat of the Thwaites Glacier system in the Amundsen Sea embayment (ASE)of Antarctica provides constraints for models that are used to predict thefuture trajectory of the West Antarctic Ice Sheet (WAIS). Existingcosmogenic nuclide surface exposure ages suggest that Pope Glacier, a formertributary of Thwaites Glacier, experienced rapid thinning in the early tomid-Holocene. There are relatively few exposure ages from the lower ice-freesections of Mt. Murphy (<300 m a.s.l.; metres above sea level) that are uncomplicated byeither nuclide inheritance or scatter due to localised topographiccomplexities; this makes the trajectory for the latter stages ofdeglaciation uncertain. This paper presents 12 new 10Be exposure agesfrom erratic cobbles collected from the western flank of Mt. Murphy, within160 m of the modern ice surface and 1 km from the present grounding line.The ages comprise two tightly clustered populations with mean deglaciationages of 7.1 ± 0.1 and 6.4 ± 0.1 ka (1 SE). Linear regressionanalysis applied to the age–elevation array of all available exposure agesfrom Mt. Murphy indicates that the median rate of thinning of Pope Glacierwas 0.27 m yr−1 between 8.1–6.3 ka, occurring 1.5 times faster thanpreviously thought. Furthermore, this analysis better constrains theuncertainty (95 % confidence interval) in the timing of deglaciation atthe base of the Mt. Murphy vertical profile (∼ 80 m above themodern ice surface), shifting it to earlier in the Holocene (from 5.2 ± 0.7 to 6.3 ± 0.4 ka). Taken together, the results presentedhere suggest that early- to mid-Holocene thinning of Pope Glacier occurredover a shorter interval than previously assumed and permit a longer durationover which subsequent late Holocene re-thickening could have occurred.more » « less
An official website of the United States government

Full Text Available