Learning from demonstration (LfD) seeks to democratize robotics by enabling non-experts to intuitively program robots to perform novel skills through human task demonstration. Yet, LfD is challenging under a task and motion planning (TAMP) setting, as solving long-horizon manipulation tasks requires the use of hierarchical abstractions. Prior work has studied mechanisms for eliciting demonstrations that include hierarchical specifications for robotics applications but has not examined whether non-roboticist end-users are capable of providing such hierarchical demonstrations without explicit training from a roboticist for each task. We characterize whether, how, and which users can do so. Finding that the result is negative, we develop a series of training domains that successfully enable users to provide demonstrations that exhibit hierarchical abstractions. Our first experiment shows that fewer than half (35.71%) of our subjects provide demonstrations with hierarchical abstractions when not primed. Our second experiment demonstrates that users fail to teach the robot with adequately detailed TAMP abstractions, when not shown a video demonstration of an expert’s teaching strategy. Our experiments reveal the need for fundamentally different approaches in LfD to enable end-users to teach robots generalizable long-horizon tasks without being coached by experts at every step. Toward this goal, we developed and evaluated a set of TAMP domains for LfD in a third study. Positively, we find that experience obtained in different, training domains enables users to provide demonstrations with useful, plannable abstractions on new, test domains just as well as providing a video prescribing an expert’s teaching strategy in the new domain. 
                        more » 
                        « less   
                    
                            
                            Enhancing Safety in Learning from Demonstration Algorithms via Control Barrier Function Shielding
                        
                    
    
            Learning from Demonstration (LfD) is a powerful method for nonroboticists end-users to teach robots new tasks, enabling them to customize the robot behavior. However, modern LfD techniques do not explicitly synthesize safe robot behavior, which limits the deployability of these approaches in the real world. To enforce safety in LfD without relying on experts, we propose a new framework, ShiElding with Control barrier fUnctions in inverse REinforcement learning (SECURE), which learns a customized Control Barrier Function (CBF) from end-users that prevents robots from taking unsafe actions while imposing little interference with the task completion. We evaluate SECURE in three sets of experiments. First, we empirically validate SECURE learns a high-quality CBF from demonstrations and outperforms conventional LfD methods on simulated robotic and autonomous driving tasks with improvements on safety by up to 100%. Second, we demonstrate that roboticists can leverage SECURE to outperform conventional LfD approaches on a real-world knife-cutting, meal-preparation task by 12.5% in task completion while driving the number of safety violations to zero. Finally, we demonstrate in a user study that non-roboticists can use SECURE to efectively teach the robot safe policies that avoid collisions with the person and prevent cofee from spilling. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2219755
- PAR ID:
- 10499423
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction
- ISBN:
- 9798400703225
- Page Range / eLocation ID:
- 820 to 829
- Subject(s) / Keyword(s):
- Learning from Demonstration, Control Barrier Function, Safety
- Format(s):
- Medium: X
- Location:
- Boulder CO USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Learning from Demonstration (LfD) approaches empower end-users to teach robots novel tasks via demonstrations of the desired behaviors, democratizing access to robotics. However, current LfD frameworks are not capable of fast adaptation to heterogeneous human demonstrations nor the large-scale deployment in ubiquitous robotics applications. In this paper, we propose a novel LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR). Our approach (1) leverages learned strategies to construct policy mixtures for fast adaptation to new demonstrations, allowing for quick end-user personalization, (2) distills common knowledge across demonstrations, achieving accurate task inference; and (3) expands its model only when needed in lifelong deployments, maintaining a concise set of prototypical strategies that can approximate all behaviors via policy mixtures. We empirically validate that FLAIR achieves adaptability (i.e., the robot adapts to heterogeneous, user-specific task preferences), efficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e., the model grows sublinearly with the number of demonstrations while maintaining high performance). FLAIR surpasses benchmarks across three control tasks with an average 57% improvement in policy returns and an average 78% fewer episodes required for demonstration modeling using policy mixtures. Finally, we demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR as having higher task (p < .05) and personalization (p < .05) performance.more » « less
- 
            Robot-mediated therapy is an emerging field of research seeking to improve therapy for children with Autism Spectrum Disorder (ASD). Current approaches to autonomous robot-mediated therapy often focus on having a robot teach a single skill to children with ASD and lack a personalized approach to each individual. More recently, Learning from Demonstration (LfD) approaches are being explored to teach socially assistive robots to deliver personalized interventions after they have been deployed but these approaches require large amounts of demonstrations and utilize learning models that cannot be easily interpreted. In this work, we present a LfD system capable of learning the delivery of autism therapies in a data-efficient manner utilizing learning models that are inherently interpretable. The LfD system learns a behavioral model of the task with minimal supervision via hierarchical clustering and then learns an interpretable policy to determine when to execute the learned behaviors. The system is able to learn from less than an hour of demonstrations and for each of its predictions can identify demonstrated instances that contributed to its decision. The system performs well under unsupervised conditions and achieves even better performance with a low-effort human correction process that is enabled by the interpretable model.more » « less
- 
            null (Ed.)With growing access to versatile robotics, it is beneficial for end users to be able to teach robots tasks without needing to code a control policy. One possibility is to teach the robot through successful task executions. However, near-optimal demonstrations of a task can be difficult to provide and even successful demonstrations can fail to capture task aspects key to robust skill replication. Here, we propose a learning from demonstration (LfD) approach that enables learning of robust task definitions without the need for near-optimal demonstrations. We present a novel algorithmic framework for learning task specifications based on the ergodic metric—a measure of information content in motion. Moreover, we make use of negative demonstrations— demonstrations of what not to do—and show that they can help compensate for imperfect demonstrations, reduce the number of demonstrations needed, and highlight crucial task elements improving robot performance. In a proof-of-concept example of cart-pole inversion, we show that negative demonstrations alone can be sufficient to successfully learn and recreate a skill. Through a human subject study with 24 participants, we show that consistently more information about a task can be captured from combined positive and negative (posneg) demonstrations than from the same amount of just positive demonstrations. Finally, we demonstrate our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF Franka arm. Our results point towards a future with robust, data efficient LfD for novice users.more » « less
- 
            The field of end-user robot programming seeks to develop methods that empower non-expert programmers to task and modify robot operations. In doing so, researchers may enhance robot flexibility and broaden the scope of robot deployments into the real world. We introduce PRogramAR (Programming Robots using Augmented Reality), a novel end-user robot programming system that combines the intuitive visual feedback of augmented reality (AR) with the simplistic and responsive paradigm of trigger-action programming (TAP) to facilitate human-robot collaboration. Through PRogramAR, users are able to rapidly author task rules and desired reactive robot behaviors, while specifying task constraints and observing program feedback contextualized directly in the real world. PRogramAR provides feedback by simulating the robot’s intended behavior and providing instant evaluation of TAP rule executability to help end users better understand and debug their programs during development. In a system validation, 17 end users ranging from ages 18 to 83 used PRogramAR to program a robot to assist them in completing three collaborative tasks. Our results demonstrate how merging the benefits of AR and TAP using elements from prior robot programming research into a single novel system can successfully enhance the robot programming process for non-expert users.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    