skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamical Importance of the Trade Wind Inversion in Suppressing the Southeast Pacific ITCZ
Sea surface temperature (SST) gradients are a primary driver of low‐level wind convergence in the east Pacific Inter‐Tropical Convergence Zone (ITCZ) through their hydrostatic relationship to the surface pressure gradient force (PGF). However, the surface PGF may not always align with SST gradients due to variations in boundary layer temperature gradients with height, that is, the boundary layer contribution to the surface PGF. In this study, we investigate the observed northern hemisphere position of the east Pacific ITCZ using a slab boundary layer model (SBLM) driven by different approximations of the boundary layer virtual temperature field. SBLM simulations using the entire boundary layer virtual temperature profile produce a realistic northern hemisphere ITCZ. However, SST‐only simulations produce excessive equatorial divergence and southern hemisphere convergence, resulting in a latitudinally confined double ITCZ‐like structure. Observed virtual temperature gradients highlight the importance of northward temperature gradients strengthening with height from the equator to 15°S below the trade wind inversion (TWI). Our interpretation is that the equatorial cold tongue induces relatively weak high surface pressure and double ITCZ‐like convergence because the resulting layer of cold air is shallow. Concurrently, relatively strong high surface pressure spreads out in the southern hemisphere due to interactions between stratocumulus clouds and the ocean surface. Together, the equatorial cold tongue and the TWI/stratocumulus clouds enable a more northern hemisphere dominant ITCZ. Thus, we provide evidence of a dynamical link between the equatorial cold tongue, low clouds, and double ITCZs, which continue to be problematic in Earth system models.  more » « less
Award ID(s):
1953944 2303225 2303226 1924659
PAR ID:
10499428
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The latitudinal location of the east Pacific Ocean intertropical convergence zone (ITCZ) changes on time scales of days to weeks during boreal spring. This study focuses on tropical near-surface dynamics in the days leading up to the two most frequent types of ITCZ events, nITCZ (Northern Hemisphere) and dITCZ (double). There is a rapid daily evolution of dynamical features on top of a slower, weekly evolution that occurs leading up to and after nITCZ and dITCZ events. Zonally elongated bands of anomalous cross-equatorial flow and off-equatorial convergence rapidly intensify and peak 1 day before or the day of these ITCZ events, followed 1 or 2 days later by a peak in near-equatorial zonal wind anomalies. In addition, there is a wide region north of the southeast Pacific subtropical high where anomalous northwesterlies strengthen prior to nITCZ events and southeasterlies strengthen before dITCZ events. Anomalous zonal and meridional near-surface momentum budgets reveal that the terms associated with Ekman balance are of first-order importance preceding nITCZ events, but that the meridional momentum advective terms are just as important before dITCZ events. Variations in cross-equatorial flow are promoted by the meridional pressure gradient force (PGF) prior to nITCZ events and the meridional advection of meridional momentum in addition to the meridional PGF before dITCZ events. Meanwhile, variations in near-equatorial easterlies are driven by the zonal PGF and the Coriolis force preceding nITCZ events and the zonal PGF, the Coriolis force, and the meridional advection of zonal momentum before dITCZ events. 
    more » « less
  2. Abstract Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ. 
    more » « less
  3. Abstract Surface winds and precipitation over the tropical oceans are related to sea surface temperature (SST) through multiple mechanisms. Greater SST is associated with greater conditional instability, which in turn is more conducive to deep convection. The associated mass and flow responses can extend to the surface, via associated pressure gradients imprinted on the top of the planetary boundary layer (PBL). SST also influences surface pressure and wind directly through its control over PBL temperature, as explained by Lindzen and Nigam. The authors examine the relative magnitudes of these two influences over the eastern tropical Pacific on subseasonal precipitation variability during northern summer, when and where SST gradients are largest and the direct influence via PBL temperature is expected to be strongest. Geopotential at 1000 hPa is partitioned into two components: the geopotential at the PBL top (the PBL top is chosen to be 850 hPa, supported by an analysis of the vertical structure of geopotential and temperature) and the PBL thickness. These fields are composited on quintiles of daily ITCZ precipitation both with and without a high-pass filter that isolates subseasonal time scales. The PBL thickness varies little between the highest and lowest precipitation quintiles, while the PBL top geopotential varies much more. This supports a view in which the direct contribution of SST to the surface pressure and flow fields, including the associated PBL convergence over sharp SST maxima, can be viewed as a steady forcing on the rest of the column, while free-tropospheric transients contribute most of the variability associated with precipitation on subseasonal time scales. 
    more » « less
  4. null (Ed.)
    Abstract Climate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) vary significantly in their ability to simulate the phase and amplitude of atmospheric stationary waves in the midlatitude Southern Hemisphere. These models also suffer from a double intertropical convergence zone (ITCZ), with excessive precipitation in the tropical eastern South Pacific, and many also suffer from a biased simulation of the dynamics of the Agulhas Current around the tip of South Africa. The intermodel spread in the strength and phasing of SH midlatitude stationary waves in the CMIP archive is shown to be significantly correlated with the double-ITCZ bias and biases in the Agulhas Return Current. An idealized general circulation model (GCM) is used to demonstrate the causality of these links by prescribing an oceanic heat flux out of the tropical east Pacific and near the Agulhas Current. A warm bias in tropical east Pacific SSTs associated with an erroneous double ITCZ leads to a biased representation of midlatitude stationary waves in the austral hemisphere, capturing the response evident in CMIP models. Similarly, an overly diffuse sea surface temperature gradient associated with a weak Agulhas Return Current leads to an equatorward shift of the Southern Hemisphere jet by more than 3° and weak stationary wave activity in the austral hemisphere. Hence, rectification of the double-ITCZ bias and a better representation of the Agulhas Current should be expected to lead to an improved model representation of the austral hemisphere. 
    more » « less
  5. Abstract The mean-state bias and the associated forecast errors of the El Niño–Southern Oscillation (ENSO) are investigated in a suite of 2-yr-lead retrospective forecasts conducted with the Community Earth System Model, version 1, for 1954–2015. The equatorial Pacific cold tongue in the forecasts is too strong and extends excessively westward due to a combination of the model’s inherent climatological bias, initialization imbalance, and errors in initial ocean data. The forecasts show a stronger cold tongue bias in the first year than that inherent to the model due to the imbalance between initial subsurface oceanic states and model dynamics. The cold tongue bias affects not only the pattern and amplitude but also the duration of ENSO in the forecasts by altering ocean–atmosphere feedbacks. The predicted sea surface temperature anomalies related to ENSO extend to the far western equatorial Pacific during boreal summer when the cold tongue bias is strong, and the predicted ENSO anomalies are too weak in the central-eastern equatorial Pacific. The forecast errors of pattern and amplitude subsequently lead to errors in ENSO phase transition by affecting the amplitude of the negative thermocline feedback in the equatorial Pacific and tropical interbasin adjustments during the mature phase of ENSO. These ENSO forecast errors further degrade the predictions of wintertime atmospheric teleconnections, land surface air temperature, and rainfall anomalies over the Northern Hemisphere. These mean-state and ENSO forecast biases are more pronounced in forecasts initialized in boreal spring–summer than other seasons due to the seasonal intensification of the Bjerknes feedback. 
    more » « less