skip to main content

This content will become publicly available on April 15, 2025

Title: The Relationship between Convectively Coupled Waves and the East Pacific ITCZ
Longstanding climate model biases in tropical precipitation exist over the east Pacific (EP) Ocean, especially during boreal winter and spring when models have excessive Southern Hemisphere (SH) precipitation near the intertropical convergence zone (ITCZ). In this study, we document the impact of convectively coupled waves (CCWs) on EP precipitation and the ITCZ using observations and reanalyses. We focus on the months when SH precipitation peaks in observations: February–April (FMA). CCWs explain 93% of total precipitation variance in the SH, nearly double the percent (48%) of the NH during FMA. However, we note that these percentages are inflated as they inevitably include the background variance. We further investigate the three leading high-frequency wave bands: mixed Rossby–gravity waves and tropical depression–type disturbances (MRG–TD type), Kelvin waves, andn= 0 eastward inertia–gravity waves (IG0). Compared to their warm pool counterparts, these three CCWs have a more zonally elongated and meridionally narrower precipitation structure with circulations that resemble past observational studies and/or shallow water theory. We quantify the contribution of all CCWs to four different daily ITCZ “states”: Northern Hemisphere (NH) (nITCZ), SH (sITCZ), double (dITCZ), and equatorial (eITCZ) using a new precipitation-based ITCZ-state algorithm. We find that the percent of total precipitation variance explained by each of the CCWs is heightened for sITCZs and eITCZs and diminished for nITCZs. Last, we find that nITCZs are most prevalent weeks after strong CCW activity happens in the NH, whereas CCWs and sITCZs peak simultaneously in the SH.

Significance Statement

Convectively coupled atmospheric waves (CCWs) are a critical feature of tropical weather and are an important source of precipitation near the region of highest precipitation on Earth called the intertropical convergence zone (ITCZ). Given three decades of climate model biases in CCWs and ITCZ precipitation over the east Pacific (EP) Ocean during spring, few studies have examined the relationship between CCWs and the springtime EP ITCZ. We explored the CCWs and EP ITCZ relationship through calculations of the percent of precipitation that comes from CCWs. A significant portion of the tropical precipitation is associated with CCWs during spring. CCWs are even more impactful when the ITCZ is in the SH or on the equator, which are both problematic in climate models.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
2565 to 2583
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Climate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) vary significantly in their ability to simulate the phase and amplitude of atmospheric stationary waves in the midlatitude Southern Hemisphere. These models also suffer from a double intertropical convergence zone (ITCZ), with excessive precipitation in the tropical eastern South Pacific, and many also suffer from a biased simulation of the dynamics of the Agulhas Current around the tip of South Africa. The intermodel spread in the strength and phasing of SH midlatitude stationary waves in the CMIP archive is shown to be significantly correlated with the double-ITCZ bias and biases in the Agulhas Return Current. An idealized general circulation model (GCM) is used to demonstrate the causality of these links by prescribing an oceanic heat flux out of the tropical east Pacific and near the Agulhas Current. A warm bias in tropical east Pacific SSTs associated with an erroneous double ITCZ leads to a biased representation of midlatitude stationary waves in the austral hemisphere, capturing the response evident in CMIP models. Similarly, an overly diffuse sea surface temperature gradient associated with a weak Agulhas Return Current leads to an equatorward shift of the Southern Hemisphere jet by more than 3° and weak stationary wave activity in the austral hemisphere. Hence, rectification of the double-ITCZ bias and a better representation of the Agulhas Current should be expected to lead to an improved model representation of the austral hemisphere. 
    more » « less
  2. Abstract

    Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ.

    more » « less
  3. Abstract

    This study investigates how convectively coupled tropical easterly waves (TEWs) affect the Choco low-level jet (ChocoJet) as they move across the western Caribbean. The ChocoJet is a low-level flow over the eastern Pacific (EPAC) that modulates precipitation patterns over the tropical eastern Pacific and northwestern South America. By combining data from the Organization of Tropical East Pacific Convection (OTREC; August–September 2019), ERA5 reanalysis products, and satellite data, we analyze precipitation and circulation patterns during convectively coupled and nonconvectively coupled TEWs, comparing them to non-TEW days. During convectively coupled TEWs days, the ChocoJet strengthens and becomes more southerly, while the ITCZ moves northward, leading to enhanced precipitation over the western Caribbean and drier conditions over the northern part of the Colombian Pacific. In contrast, nonconvectively coupled TEW days exhibit reduced precipitation and precipitable water over the Caribbean and far EPAC, with a layer of northeasterly flow centered at 850 hPa flowing over a shallower, weaker, and more westerly ChocoJet. Additionally, convectively coupled TEWs are associated with a weaker western Caribbean and far eastern Pacific pressure gradient compared to nonconvective TEWs. These observable and predictable synoptic-scale circulation–precipitation relationships contribute to a better understanding of hydrometeorological variability in the region.

    Significance Statement

    Tropical easterly waves and related convective organization traversing the Caribbean Sea are important sources of synoptic-scale precipitation–circulation variability in the far eastern Pacific and Colombian Pacific. This eastern tropical Pacific study aims to identify precipitation–circulation relationships that enhance the understanding of synoptic-scale meteorological phenomena.

    more » « less
  4. Abstract

    The intertropical convergence zone (ITCZ) is a zonally elongated band of near-surface convergence and precipitation near the equator. During boreal spring, the eastern Pacific ITCZ migrates latitudinally on daily to subseasonal time scales, and climate models exhibit the greatest ITCZ biases during this time of the year. In this work, we investigate the air–sea interactions associated with the variability in the eastern Pacific ITCZ’s latitudinal location for consecutive days when the ITCZ is only located north of the equator (nITCZ events) compared to when the ITCZ is on both sides of the equator or south of the equator (dsITCZ events) during February–April. The distribution of sea surface temperature (SST) anomalies and surface latent heat flux (SLHF) anomalies during the nITCZ and dsITCZ events follow the classic wind–evaporation–SST (WES) positive feedback mechanism. However, an alternative mechanism, embracing the effect of SST anomalies on vertical stratification and momentum mixing, gives rise to a negative WES feedback. Our results show that in the surface layer, there is a general progression of positive WES feedbacks happening in the weeks leading to the events followed by negative WES feedbacks occurring after the ITCZ events, with an alternate mechanism involving air–sea humidity differences limiting evaporation occurring in between. Additionally, the spatial structures of the components of the feedbacks are nearly mirror images for these opposite ITCZ events over the east Pacific during boreal spring. In closing, we find that understanding the air–sea interactions during daily to weekly varying ITCZ events (nITCZ and dsITCZ) helps to pinpoint how fundamental processes differ for ITCZs in different hemispheres.

    more » « less
  5. Abstract

    The intertropical convergence zone (ITCZ) is associated with a zonal band of strong precipitation that migrates meridionally over the seasonal cycle. Tropical precipitation also migrates zonally, such as from the South Asian monsoon in Northern Hemisphere summer (JJA) to the precipitation maximum of the west Pacific in Northern Hemisphere winter (DJF). To explore this zonal movement in the Indo-Pacific sector, we analyze the seasonal cycle of tropical precipitation using a 2D energetic framework and study idealized atmosphere–ocean simulations with and without ocean dynamics. In the observed seasonal cycle, an atmospheric energy and precipitation anomaly forms over South Asia in northern spring and summer due to heating over land. It is then advected eastward into the west Pacific in northern autumn and remains there due to interactions with the Pacific cold tongue and equatorial easterlies. We interpret this phenomenon as a “monsoonal mode,” a zonally propagating moist energy anomaly of continental and seasonal scale. To understand the behavior of the monsoonal mode, we develop and explore an analytical model in which the monsoonal mode is advected by low-level winds, is sustained by interaction with the ocean, and decays due to the free tropospheric mixing of energy.

    Significance Statement

    Regional concentrations of tropical precipitation, such as the South Asian monsoon, provide water to billions of people. These features have strong seasonal cycles that have typically been framed in terms of meridional shifts of precipitation following the sun’s movement. Here, we study zonal shifts of tropical precipitation over the seasonal cycle in observations and idealized simulations. We find that land–ocean contrasts trigger a monsoon with concentrated precipitation over Asia in northern summer and near-surface eastward winds carry this precipitation into the west Pacific during northern autumn in what we call a “monsoonal mode.” This concentrated precipitation remains over the west Pacific during northern winter, as further migration is impeded by the cold sea surface temperatures (SSTs) and easterly winds of the east Pacific.

    more » « less