RationaleIt is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values. MethodsWe evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years. ResultsTissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰). ConclusionsThe effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.
more »
« less
The influence of biopsy site and pregnancy on stable isotope ratios in humpback whale skin
Abstract RationaleStable isotope analysis (SIA) of free‐swimming mysticetes using biopsies is often limited in sample size and uses only one sample per individual, failing to capture both intra‐individual variability and the influence of demographic and physiological factors on isotope ratios. MethodsWe applied SIA of δ13C and δ15N to humpback whale (Megaptera novaeangliae) biopsies taken during the foraging season along the western Antarctic Peninsula to quantify intra‐individual variation from repeatedly sampled individuals, as well as to determine the effect of biopsy collection site, sex, and pregnancy on isotope ratios. ResultsThere was substantial variability in δ13C from multiple biopsies taken from the same individuals, though δ15N was much more consistent. Side of the body (left versus right) and biopsy location (dorsal, anterior, ventral, and posterior) did marginally affect the isotopic composition of δ15N but not δ13C. Pregnancy had a significant effect on both δ13C and δ15N, where pregnant females were depleted in both when compared to non‐pregnant females and males. ConclusionsThese results indicate that isotopic signatures are influenced by multiple endogenous and exogenous factors and emphasize value in accounting for intra‐individual variability and pregnancy status within a sampled population. Placed within an ecological context, the endogenous variability in δ13C observed here may be informative for future isotopic analyses.
more »
« less
- Award ID(s):
- 1927742
- PAR ID:
- 10499437
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Rapid Communications in Mass Spectrometry
- Volume:
- 38
- Issue:
- 11
- ISSN:
- 0951-4198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Apex predators are typically considered dietary generalists, which often masks individual variability. However, individual specialization—consistent differences among individuals in resource use or ecological role—is common in apex predators. In some species, only a few specialized individuals can significantly impact prey populations. Leopard seals (Hydrurga leptonyx) are apex predators important to the structure and function of the Southern Ocean ecosystem. Though broadly described as generalists, little is known about their trophic ecology at the population or individual level. We analyzed δ13C and δ15N profiles in whiskers (n = 46) from 34 leopard seals in the Western Antarctic Peninsula to assess trophic variation. We also evaluated individual consistency across years using repeat samples from 7 seals over 2–10 years. We compared population and individual isotopic niche space and explored drivers of intraspecific variation in leopard seal trophic ecology. We find that leopard seals have a broad trophic niche (range: 6.96%–15.21‰) and are generalists at the population level. However, most individuals are specialists (59% for δ15N and δ13C), with only a few generalists (13% for δ15N, 6% for δ13C). Individuals also specialize at different trophic levels. Most variation in trophic ecology is driven by individual specialization, but sex and mass also contribute. We also find that some seals specialize over time, consistently foraging at the same trophic level, while others switch within and between years. This suggests some seals may disproportionately impact prey, especially when specialists consistently target specific species. Long‐term specialization by a few leopard seals likely contributed to the decline of the local Antarctic fur seal population. Our findings show the importance of examining individual specialization in leopard seals across their range to understand their impact on other prey populations. This approach should be applied to other apex predator populations, as a few specialists can significantly impact ecosystems.more » « less
-
Abstract Trophic ecology and resource use are challenging to discern in migratory marine species, including sharks. However, effective management and conservation strategies depend on understanding these life history details. Here we investigate whether dental enameloid zinc isotope (δ66Znen) values can be used to infer intrapopulation differences in foraging ecology by comparing δ66Znenwith same-tooth collagen carbon and nitrogen (δ13Ccoll, δ15Ncoll) values from critically endangered sand tiger sharks (Carcharias taurus) from Delaware Bay (USA). We document ontogeny and sex-related isotopic differences indicating distinct diet and habitat use at the time of tooth formation. Adult females have the most distinct isotopic niche, likely feeding on higher trophic level prey in a distinct habitat. This multi-proxy approach characterises an animal’s isotopic niche in greater detail than traditional isotope analysis alone and shows that δ66Znenanalysis can highlight intrapopulation dietary variability thereby informing conservation management and, due to good δ66Znenfossil tooth preservation, palaeoecological reconstructions.more » « less
-
ABSTRACT Investigating the foraging ecology and trophic interactions of threatened marine predators is critical to assess how community changes due to anthropogenic activities will affect predator–prey relationships. Two species of threatened coastal dolphins, the Indian Ocean humpback dolphin (Sousa plumbea) and the Indo‐Pacific bottlenose dolphin (Tursiops aduncus), occur off Nosy Be, north‐western Madagascar, in a region where artisanal fisheries are ecologically and socioeconomically important. Here, we investigated the feeding ecology of these two coastal dolphins and their trophic interactions with four other odontocetes using bulk stable carbon and nitrogen isotope analysis (δ13C andδ15N). Humpback dolphins had significantly enrichedδ13C values, reflecting a preference for coastal/benthic prey. Bottlenose dolphins had a broader isotopic niche, suggesting a broader range of prey and foraging habitats. The overlap in isotopic niche of all six odontocete species was limited, indicating partitioning of resources and habitats. Bayesian mass‐balance isotopic mixing models revealed that humpback dolphins forage primarily on reef planktivores (38.9%) and inner reef mesopredators (20.5%), while bottlenose dolphins had a broader diet, including reef‐associated (15%–32%) and pelagic prey (12%–23%). Our study reveals that the reliance on inshore prey by humpback dolphins may place them in competition with coastal fisheries.more » « less
-
ABSTRACT RationaleThe isotopic composition of dissolved dinitrogen gas (δ15N‐N2) in water can offer a powerful constraint on the sources and pathways of nitrogen cycling in aquatic systems. However, because of the large presence of atmosphere‐derived dissolved N2in these systems, high‐precision (on the order of 0.001‰) measurements of N2isotopes paired with inert gas measurements are required to disentangle atmospheric and biogeochemical signals. Additionally, the solubility equilibrium isotope fractionation of N2and its temperature and salinity dependence are underconstrained at this level of precision. MethodsWe introduce a new technique for sample collection, processing, and dynamic dual‐inlet mass spectrometry allowing for high‐precision measurement of δ15N‐N2and δ(N2/Ar) with simultaneous measurement of δ(40Ar/36Ar) and δ(Kr/N2) in water. We evaluate the reproducibility of this technique and employ it to redetermine the solubility equilibrium isotope effects for dissolved N2across a range of temperatures and salinities. ResultsOur technique achieves measurement reproducibility (1σ) for δ15N‐N2(0.006‰) and δ(N2/Ar) (0.41‰) suitable for tracing biogeochemical nitrogen cycling in aquatic environments. Through a series of air–water equilibration experiments, we find a N2solubility equilibrium isotope effect (ε = α/1000 − 1, where α = (29N2/28N2)dissolved/(29N2/28N2)gas) in water of ε(‰) = 0.753 − 0.004•TwhereTis the temperature (°C), with uncertainties on the order of 0.001‰ over the temperature range of ~2°C–23°C and salinity range of ~0–30 psu. We find no apparent dependence of ε on salinity. ConclusionsOur new method allows for high‐precision measurements of the isotopic composition of dissolved N2and Ar, and dissolved N2/Ar and Kr/N2ratios, within the same sample. Pairing measurements of N2with inert gases facilitates the quantification of excess N2from biogeochemical sources and its isotopic composition. This method allows for a wide range of applications in marine, coastal, and freshwater environments to characterize and quantitatively constrain potential nitrogen‐cycling sources and pathways and to differentiate between physical and biological isotope signals in these systems.more » « less
An official website of the United States government
