skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: The influence of biopsy site and pregnancy on stable isotope ratios in humpback whale skin
Abstract Rationale

Stable isotope analysis (SIA) of free‐swimming mysticetes using biopsies is often limited in sample size and uses only one sample per individual, failing to capture both intra‐individual variability and the influence of demographic and physiological factors on isotope ratios.

Methods

We applied SIA of δ13C and δ15N to humpback whale (Megaptera novaeangliae) biopsies taken during the foraging season along the western Antarctic Peninsula to quantify intra‐individual variation from repeatedly sampled individuals, as well as to determine the effect of biopsy collection site, sex, and pregnancy on isotope ratios.

Results

There was substantial variability in δ13C from multiple biopsies taken from the same individuals, though δ15N was much more consistent. Side of the body (left versus right) and biopsy location (dorsal, anterior, ventral, and posterior) did marginally affect the isotopic composition of δ15N but not δ13C. Pregnancy had a significant effect on both δ13C and δ15N, where pregnant females were depleted in both when compared to non‐pregnant females and males.

Conclusions

These results indicate that isotopic signatures are influenced by multiple endogenous and exogenous factors and emphasize value in accounting for intra‐individual variability and pregnancy status within a sampled population. Placed within an ecological context, the endogenous variability in δ13C observed here may be informative for future isotopic analyses.

 
more » « less
PAR ID:
10499437
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
38
Issue:
11
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    The grey seal,Halichoerus grypus(GS), and the northern elephant seal,Mirounga angustirostris(NES), come ashore for reproduction. This period involves intense physiological processes such as lactation in females and a developmental post‐weaning fast in juveniles. Previous studies have shown thatδ13C andδ15N values are affected by starvation, but the precise effects of fasting associated with lactation and post‐weaning fast in seals remain poorly understood.

    Methods

    To examine the effect of lactation and post‐weaning fast on stable isotope ratios in GS and NES, blood and hair were sampled from 21 GS mother‐pup pairs on the Isle of May and on 22 weaned NES pups at Año Nuevo State Reserve during their respective breeding seasons. Milk samples were also collected from GS mothers. Stable isotope measurements were performed with an isotope ratio mass spectrometer coupled to an N‐C elemental analyser.

    Results

    Changes in stable isotope ratios in blood components during fasting were similar and weak between GS and NES mothers especially in blood cells (GS:Δ15N = 0.05‰,Δ13C = 0.02‰; NES:Δ15N = 0.1‰,Δ13C = 0.1‰). GS showed a15N discrimination factor between maternal and pup blood cells and milk, but not for13C. The strongest relationship between the isotopic compositions of the mother and the pup was observed in the blood cells.

    Conclusions

    Isotopic consequences of lactation, fasting, and growth seem limited in NES and GS, especially in medium‐term integrator tissues of feeding activity such as blood cells. Stable isotope ratios in the blood of pups and mothers are correlated. We observed a subtle mother‐to‐pup fractionation factor. Our results suggest that pup blood cells are mostly relevant for exploring the ecology of female seals.

     
    more » « less
  2. Rationale

    Plant lipid biomarkers, such as plant waxes and terpenoids, and the stable isotopic composition of bulk leaves are widely used in both modern and paleoclimate studies for tracking vegetation and climate. However, the effects of different drying methods on the preservation of plant lipid biomarkers and the stable isotopic compositions of leaves are less explored. Here, we investigated various drying methods for the measurement of plant lipid concentrations and bulk leaf isotopic compositions.

    Methods

    Leaves from four tree species (Acer rubrum,Pinus sylvestris,Platanus occidentalis, andTaxodium distichum) were collected and dried using air, an oven, a freeze‐dryer, and a microwave. We compared concentrations of leaf waxes and terpenoids and carbon (δ13C) and nitrogen (δ15N) isotopic compositions of leaves by different drying methods.

    Results

    The air, oven, freeze‐dryer, and microwave drying methods did not affect lipid concentrations significantly, and only a few homologues differed (38.1% or 41.8 μg/g on average) possibly due to biological variations or enhanced extraction efficiencies. The δ13C values were not affected by drying methods, whereas the δ15N values in oven‐dried leaves in some species were higher by 0.2–0.7‰ than those obtained by other methods. Though small, we attribute these patterns to loss of leaf compounds with lower isotope ratios during oven‐drying.

    Conclusions

    Based on our results, each drying technique yielded equivalent results for all plant wax and terpenoid concentrations and bulk leaf δ13C values; however, oven‐drying modified the δ15N values.

     
    more » « less
  3. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.

    Methods

    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.

    Results

    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).

    Conclusions

    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

     
    more » « less
  4. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less
  5. Abstract Objectives

    We compared δ15N and δ13C values from bone and dentine collagen profiles of individuals interred in famine‐related and attritional burials to evaluate whether individuals in medieval London who experienced nutritional stress exhibit enriched nitrogen in bone and tooth tissue. Dentine profiles were evaluated to identify patterns that may be indicative of famine during childhood and were compared with the age of enamel hypoplasia (EH) formation to assess whether isotopic patterns of undernutrition coincide with the timing of physiological stress.

    Materials and Methods

    δ15N and δ13C isotope ratios of bone collagen were obtained from individuals (n= 128) interred in attritional and famine burials from a medieval London cemetery (c. 1120–1539). Temporal sequences of δ15N and δ13C isotope profiles for incrementally forming dentine collagen were obtained from a subset of these individuals (n= 21).

    Results

    Results indicate that individuals from attritional graves exhibit significantly higher δ15N values but no significant differences were found between burial types for the sexes. Analyses of dentine profiles reveal that a lower proportion of famine burials exhibit stable dentine profiles and that several exhibit a pattern of opposing covariance between δ15N and δ13C. EH were also observed to have formed during or after the opposing covariance pattern for some individuals.

    Conclusions

    The results of this study may reflect differences in diet between burial types rather than nutritional stress. Though nutritional stress could not be definitively identified using bone and dentine collagen, the results from dentine analysis support previous observations of biochemical patterns associated with nutritional stress during childhood.

     
    more » « less