skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioinspired Bottlebrush Polymers Effectively Alleviate Frictional Damage Both In Vitro and In Vivo
Abstract Bottlebrush polymers (BB) have emerged as compelling candidates for biosystems to face tribological challenges, including friction and wear. This study provides a comprehensive assessment of an engineered triblock BB polymer's affinity, cell toxicity, lubrication, and wear protection in both in vitro and in vivo settings, focusing on applications for conditions like osteoarthritis and dry eye syndrome. Results show that the designed polymer rapidly adheres to various surfaces (e.g., cartilage, eye, and contact lens), forming a robust, biocompatible layer for surface lubrication and protection. The tribological performance and biocompatibility are further enhanced in the presence of hyaluronic acid (HA) both in vitro and in vivo. The exceptional lubrication performance and favorable interaction with HA position the synthesized triblock polymer as a promising candidate for innovative treatments addressing deficiencies in bio‐lubricant systems.  more » « less
Award ID(s):
2202747
PAR ID:
10499461
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
25
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Titanium has been used in various biomedical applications; however, titanium exhibits poor wear resistance, and its bioinert surface slows osseointegration in vivo. In this study, directed energy deposition (DED)-based additive manufacturing (AM) was used to process hydroxyapatite (HA) reinforced Ti6Al4V (Ti64) composites to improve biocompatibility and wear resistance simultaneously. Electron micrographs of the composites revealed dense microstructures where HA is observed at the β-phase grain boundaries. Hardness was observed to increase by 57% and 71% for 2 and 3 wt.% HA in Ti64 composites, respectively. XRD analysis revealed no change in the present phases. Tribological studies revealed an increase in contact resistance due to in situ HA-based tribofilm formation, reduction in wear rate when testing in DMEM with a ZrO2 counter wear ball, ˂1% wear ball volume loss, and suppression of cohesive failure of the Ti matrix. Histomorphometric analysis from a rat distal femur study revealed an increase in the osteoid surface over the bone surface (OS/BS) for 3 wt.% HA composite over the control Ti64 from 9 ± 1% to 14 ± 1%. Shear modulus was also observed to increase from 17 ± 3 MPa for control Ti64 to 32 ± 5 MPa for the 3 wt.% HA composite after 5 weeks. Our study demonstrates that the addition of HA in Ti64 can simultaneously improve bone tissue-implant response and wear resistance. 
    more » « less
  2. This study explores, through a full factorial experimental design, the effects of graphite concentration and spray flow rate on the morphology, thickness, and tribological performance of graphite coatings for potential tribological applications. Coatings were applied to rough substrates using varying concentrations and flow rates, followed by analysis of their morphological characteristics, roughness, thickness, coefficient of friction (COF), and wear behavior. The results revealed distinct differences in the coating morphology based on flow rate, with low-flow-rate coatings exhibiting a porous structure and higher roughness, while high-flow-rate coatings displayed denser structures with lower roughness. A COF as low as 0.09 was achieved, which represented an 86% reduction compared to uncoated steel. COF and wear track measurements showed that thickness was influential in determining friction and the extent of wear. Flow rate dictated the coating structure, quantity of transfer film on the ball, and the extent of graphite compaction in the wear track to provide a protective layer. SEM and elemental analysis further revealed that graphite coatings provided effective protection against wear, with graphite remaining embedded in the innermost crevices of the wear track. Low flow rates may be preferable for applications requiring higher roughness and porosity, while high flow rates offer advantages in achieving denser coatings and better wear resistance. Overall, this study highlights the importance of optimizing graphite concentration and spray flow rate to tailor coating morphology, thickness, and tribological performance for practical applications. 
    more » « less
  3. Protective coatings are important for enhancing tribological behavior, preventing surface degradation, and reducing friction-induced energy losses during the operation of mechanical systems. Recently, tribocatalytically driven formation of protective carbon films at the contact interface has been demonstrated as a viable approach for repairing and extending the lifetime of protective coatings. Here, we study the effect of catalytic metals, specifically their composition and amount, on the tribocatalysis process. To achieve this, we test the tribological performance of electro-deposited amorphous CoNiP and CoCuP coatings in different hydrocarbon-rich environments. Our results indicate that the tribocatalytic repair of wear-induced damage is optimal when Ni and Cu are included in the Co-P matrix at 5 wt% Ni and 7 wt% Cu, respectively. Characterization of the wear tracks suggests that among the considered samples, the tribofilms formed on the surface of Co7CuP have the highest concentration of graphitic carbon, leading to a more significant reduction in the COF and wear rate. The carbon tribofilm formation was more pronounced in decane and synthetic oil than in ethanol, which is attributed to the difference in the length of the hydrocarbon molecules affecting viscosity and the lubricant film thickness during boundary lubrication sliding. 
    more » « less
  4. Abstract Although lubricants play an essential role in reducing wear and friction in mechanical systems, environmental issues persist. In the past decades, Ionic Liquids (ILs) have arisen as environmentally friendly alternatives to conventional lubricants and additives. ILs are low-volatile and non-flammable salts that possess low melting points (below 100 °C). Their tunable properties, achieved by selecting the appropriate cation and anion, make them ideal candidates for different applications, including lubricants. In recent times, Protic Ionic Liquids (PILs) have attracted attention in the tribological community as a cost-effective alternative to conventional aprotic counterparts. In this work, a choline-amino acid ionic liquid, derived only from renewable, biodegradable, and biocompatible products, was synthesized, and investigated as both neat lubricant and additive to non-polar oil. The lubricating properties of [CHO][GLY] were studied both as a neat lubricant and as a 1 wt. % additive to a polyalphaolefin (PAO) oil using a ball-on-flat reciprocating friction tester. AISI 52100 steel disks were tested against AISI 52100 steel balls using either [CHO][GLY] or the mixture of PAO+[CHO][GLY]. For comparison purposes, the commercially available base oil, PAO, was also tested. Preliminary results showed no major differences in friction between the lubricants used. Nevertheless, the addition of 1 wt.% to the PAO demonstrated a remarkable 30% reduction in wear on the steel disk. This encouraging improvement in anti-wear characteristics raises the potential advancement of lubrication technology with the choline-amino acid ionic liquid, coupled with its environmentally friendly nature. Energy-dispersive X-ray (EDX) spectroscopy, non-contact profilometry, and scanning electron microscopy (SEM) were used to study the worn steel surfaces and elucidate the wear mechanisms. 
    more » « less
  5. Abstract Post‐traumatic osteoarthritis develops following an inciting injury to a joint and results in cartilage degeneration. Mechanical loading, including articulation, drives anabolic responses in cartilage clinically, in vivo, and in vitro. Tribological articulation, or sliding of cartilage on a glass counterface, has long been used as an in vitro tool to study cartilage tissue behavior. However, it is unclear if tribological articulation affects chondrocyte fate following injury, and if the timing of articulation impacts the resultant effect. The goal of this study was to investigate the effect of tribological articulation on injured cartilage tissue at two time points: (i) performed immediately after injury and (ii) 24 h after injury. Neonatal bovine femoral cartilage explants were injured using a rapid spring‐loaded impactor and subsequently subjected to tribological articulation. Cell death due to impact injury was highest near the articular surface, suggesting a strain‐dependent mechanism. Immediate articulation following injury mitigated cell death compared to injury alone or delayed articulation; markers for both general cell death and early‐stage apoptosis were markedly decreased in the explants that were immediately slid. Interestingly, mitigation of cell death due to sliding was most predominant at the cartilage surface. Tribological articulation is known to create fluid flow within the tissue, predominantly at the articular surface, which could drive the protective response seen here. Altogether, this work shows that perturbations to the cellular environment immediately following cartilage injury significantly impact chondrocyte fate. 
    more » « less