Mercury (Hg) is a global pollutant with substantial human health impacts. While most studies focus on atmospheric total Hg (THg) deposition, contributions of methylated Hg (MeHg), including monomethylmercury (MMHg) and dimethylmercury (DMHg), remain poorly understood. To examine this, we use rain and aerosol Hg speciation data and high-resolution surface DMHg measurements, collected on a transect from Alaskan coastal waters to the Bering and Chukchi Seas. We observed a significant fivefold increase in the MeHg:THg fraction in rain and a 10-fold increase for aerosols, closely linked to elevated surface DMHg and the highest DMHg evasion (~9.4 picomoles per square meter per hour) found in upwelling waters near the Aleutian Islands. These data highlight a previously underexplored aspect of MeHg air-sea exchange and its importance to Hg cycling and human health concerns. Our findings emphasize the importance of DMHg evasion by demonstrating that atmospheric MeHg can be transported long distances (~1700 kilometers) in the Arctic, posing risks to human health and ecosystems.
more »
« less
Radon-222 and Radium-226 seawater and ice data from Bering Sea and Chukchi Sea 2021
Mercury (Hg) concentrations and speciation within surface waters of the Arctic Ocean are controlled by a complex set of processes including photochemical and microbial transformations, redox reactions, and air-sea exchange of gaseous and particulate Hg species. In this study, our aim was to estimate the magnitude of volatile Hg fluxes across the air-sea interface, and examine the influence of ice cover on this process. While gas exchange in the open ocean has been modeled as a function of wind speed, the parameterization is problematic in the presence of sea ice, which can physically block gas exchange, as well as reduce fetch and dampen waves. By using measurements of Radon-222 (Rn-222) gas and it parent isotope, Radium-226 (Ra-226), to accurately measure gas exchange velocities (k), the relative impacts of chemical and biological processes on mercury distributions within the surface waters can then be deduced. This dataset contains Radon-222 and Radium-226 activity concentrations from R/V Sikuliaq cruise SKQ202108S in the Bering Sea, through the Bering Strait, and in shelf waters of the Chukchi Sea during May – June 2021. Samples include seawater (16 water column profiles), as well as ice cores and brine from four ice stations. At the time of the cruise, sampling locations in the Bering Sea were ice free and gas transfer velocities (k) estimated from Rn-222 deficits (with respect to Ra-226 concentrations) were in general agreement with published parameterizations of k as a function of wind speed. The springtime retreating ice edge was located at 69-70 degrees north latitude in the Chukchi Sea, and sampling locations there were located along the ice edge, in areas of open water, and at sites within the pack ice up to ~10 kilometers (km) from the ice edge. Gas transfer velocities in the marginal ice zone also reflected recent wind histories, with k values generally at the high end of or exceeding those predicted from the wind speed parameterizations.
more »
« less
- Award ID(s):
- 1854462
- PAR ID:
- 10499517
- Publisher / Repository:
- Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Radon-222 Radium-226 Bering Sea Chukchi Sea marginal ice zone mercury gas transfer velocity piston velocity air-sea gas exchange
- Format(s):
- Medium: X
- Location:
- Bering Sea and Chukchi Sea
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Methylmercury (MeHg) is a neurotoxin that bioaccumulates to potentially harmful concentrations in Arctic and Subarctic marine predators and those that consume them. Monitoring and modeling MeHg bioaccumulation and biogeochemical cycling in the ocean requires an understanding of the mechanisms behind net mercury (Hg) methylation. The key functional gene pair for Hg methylation,hgcAB, is widely distributed throughout ocean basins and spans multiple microbial phyla. While multiple microbially mediated anaerobic pathways for Hg methylation in the ocean are known, the majority ofhgcAhomologs have been found in oxic subsurface waters, in contrast to other ecosystems. In particular, microaerophilicNitrospina, a genera of nitrite-oxidizing bacteria containing ahgcA-like sequence, have been proposed as a potentially important Hg methylator in the upper ocean. The objective of this work was therefore to examine the potential of nitrifiers as Hg methylators and quantify total Hg and MeHg across three Arctic and Subarctic seas (the Gulf of Alaska, the Bering Sea and the Chukchi Sea) in regions whereNitrospinaare likely present. In Spring 2021, samples for Hg analysis were obtained with a trace metal clean rosette across these seas. Mercury methylation rates were quantified in concert with nitrification rates using onboard incubation experiments with additions of stable isotope-labeled Hg and NH4+. A significant correlation between Hg methylation and nitrification was observed across all sites (R2= 0.34,p< 0.05), with the strongest correlation in the Chukchi Sea (R2= 0.99,p< 0.001).Nitrospina-specifichgcA-like genes were detected at all sites. This study, linking Hg methylation and nitrification in oxic seawater, furthers understanding of MeHg cycling in these high latitude waters, and the ocean in general. Furthermore, these studies inform predictions of how climate and human interactions could influence MeHg concentrations across the Arctic in the future.more » « less
-
null (Ed.)Quantifying and characterizing groundwater flow and discharge from barrier islands to coastal waters is crucial for assessing freshwater resources and contaminant transport to the ocean. In this study, we examined the groundwater hydrological response, discharge, and associated nutrient fluxes in Dauphin Island, a barrier island located in the northeastern Gulf of Mexico. We employed radon ( 222 Rn) and radium (Ra) isotopes as tracers to evaluate the temporal and spatial variability of fresh and recirculated submarine groundwater discharge (SGD) in the nearshore waters. The results from a 40-day continuous 222 Rn time series conducted during a rainy season suggest that the coastal area surrounding Dauphin Island was river-dominated in the days after storm events. Groundwater response was detected about 1 week after the precipitation and peak river discharge. During the period when SGD was a factor in the nutrient budget of the coastal area, the total SGD rates were as high as 1.36 m day –1 , or almost three times higher than detected fluxes during the river-dominated period. We found from a three-endmember Ra mixing model that most of the SGD from the barrier island was composed of fresh groundwater. SGD was driven by marine and terrestrial forces, and focused on the southeastern part of the island. We observed spatial variability of nutrients in the subterranean estuary across this part of the island. Reduced nitrogen (i.e., NH 4 + and dissolved organic nitrogen) fluxes dominated the eastern shore with average rates of 4.88 and 5.20 mmol m –2 day –1 , respectively. In contrast, NO 3 – was prevalent along the south-central shore, which has significant tourism developments. The contrasting nutrient dynamics resulted in N- and P-limited coastal water in the different parts of the island. This study emphasizes the importance of understanding groundwater flow and dynamics in barrier islands, particularly those urbanized, prone to storm events, or located near large estuaries.more » « less
-
While development of the Utica/Point Pleasant Shale (UPP) is extensive in Ohio (U.S.) and increasing in Pennsylvania and West Virginia, few studies report the chemistry of produced waters from UPP wells. These data have important implications for developing best management practices for handling and waste disposal, or identifying the fluid in the event of accidental spill events. Here, we evaluated the elemental and isotope chemistry of UPP produced waters from 26 wells throughout Ohio, Pennsylvania, and West Virginia to determine any unique fluid chemistries that could be used for forensic studies. Compared to the Marcellus, UPP produced waters contain higher activities of total radium ( 226 Ra + 228 Ra) and higher 228 Ra/ 226 Ra ratios. As with the Marcellus Shale, elemental ratios (Sr/Ca) and isotope ratios ( 87 Sr/ 86 Sr) can distinguish UPP produced waters from many conventional oil and gas formations. Sr/Ca and 87 Sr/ 86 Sr ratios can fingerprint small fractions (∼0.1%) of UPP produced water in freshwater. However, because Marcellus and UPP produced waters display similar major elemental chemistry ( i.e. , Na, Ca, and Cl) and overlapping ratios of Sr/Ca and 87 Sr/ 86 Sr, 228 Ra/ 226 Ra ratios may be the best tracer to distinguish these waters.more » « less
-
Abstract Radium‐226(226Ra) and barium (Ba) exhibit similar chemical behaviors and distributions in the marine environment, serving as valuable tracers of water masses, ocean mixing, and productivity. Despite their similar distributions, these elements originate from distinct sources and undergo disparate biogeochemical cycles, which might complicate the use of these tracers. In this study, we investigate these processes by analyzing a full‐depth ocean section of226Ra activities (T1/2 = 1,600 years) and barium concentrations obtained from samples collected along the US GEOTRACES GP15 Pacific Meridional Transect during September–November 2018, spanning from Alaska to Tahiti. We find that surface waters possess low levels of226Ra and Ba due to export of sinking particulates, surpassing inputs from the continental margins. In contrast, deep waters have higher226Ra activities and Ba concentrations due to inputs from particle regeneration and sedimentary sources, with226Ra inputs primarily resulting from the decay of230Th in sediments. Further, dissolved226Ra and Ba exhibit a strong correlation along the GP15 section. To elucidate the drivers of the correlation, we used a water mass analysis, enabling us to quantify the influence of water mass mixing relative to non‐conservative processes. While a significant fraction of each element's distribution can be explained by conservative mixing, a considerable fraction cannot. The balance is driven using non‐conservative processes, such as sedimentary, rivers, or hydrothermal inputs, uptake and export by particles, and particle remineralization. Our study demonstrates the utility of226Ra and Ba as valuable biogeochemical tracers for understanding ocean processes, while shedding light on conservative and myriad non‐conservative processes that shape their respective distributions.more » « less