Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine (Pinus albicaulis) trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP). Here, we used this subfossil wood record to develop tree-ring-based temperature estimates for the upper-elevation climate conditions that resulted in ancient forest establishment and growth and the subsequent regional ice-patch growth and downslope shift of treeline. Results suggest that mid-Holocene forest establishment and growth occurred under warm-season (May-Oct) mean temperatures of 6.2 °C (±0.2 °C), until a multicentury cooling anomaly suppressed temperatures below 5.8 °C, resulting in stand mortality by c. 5,440 y BP. Transient climate model simulations indicate that regional cooling was driven by changes in summer insolation and Northern Hemisphere volcanism. The initial cooling event was followed centuries later (c. 5,100 y BP) by sustained Icelandic volcanic eruptions that forced a centennial-scale 1.0 °C summer cooling anomaly and led to rapid ice-patch growth and preservation of the trees. With recent warming (c. 2000–2020 CE), warm-season temperatures now equal and will soon exceed those of the mid-Holocene period of high treeline. It is likely that perennial ice cover will again disappear from the region, and treeline may expand upslope so long as plant-available moisture and disturbance are not limiting.
more »
« less
Organic layers preserved in ice patches: A new record of Holocene environmental change on the Beartooth Plateau, USA
Growing season temperatures play a crucial role in controlling treeline elevation at regional to global scales. However, understanding of treeline dynamics in response to long-term changes in temperature is limited. In this study, we analyze pollen, plant macrofossils, and charcoal preserved in organic layers within a 10,400-year-old ice patch and in sediment from a 6000-year-old wetland located above present-day treeline in the Beartooth Mountains, Wyoming, to explore the relationship between Holocene climate variability and shifts in treeline elevation. Pollen data indicate a lower-than-present treeline between 9000 and 6200 cal yr BP during the warm, dry summer and cold winter conditions of the early Holocene. Increases in arboreal pollen at 6200 cal yr BP suggest an upslope treeline expansion when summers became cooler and wetter. A possible hiatus in the wetland record at ca. 4200–3000 cal yr BP suggests increased snow and ice cover at high elevations and a lowering of treeline. Treeline position continued to fluctuate with growing season warming and cooling during the late-Holocene. Periods of high fire activity correspond with times of increased woody cover at high elevations. The two records indicate that climate was an important driver of vegetation and treeline change during the Holocene. Early Holocene treeline was governed by moisture limitations, whereas late-Holocene treeline was sensitive to increases in growing season temperatures. Climate projections for the region suggest warmer temperatures could decrease effective growing season moisture at high elevations resulting in a reduction of treeline elevation.
more »
« less
- Award ID(s):
- 2149482
- PAR ID:
- 10499520
- Publisher / Repository:
- Sage Journals
- Date Published:
- Journal Name:
- The Holocene
- Volume:
- 34
- Issue:
- 3
- ISSN:
- 0959-6836
- Page Range / eLocation ID:
- 338 to 352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Greenland Ice Sheet (GrIS) outlet glaciers are currently losing mass, leading to sea level rise. Reconstructions of past outlet glacier behavior through the Holocene help us better understand how they respond to climate change. Kiattuut Sermiat, a southern Greenland outlet glacier near Narsarsuaq, is known to have experienced an unusually large Late Holoceneadvance that culminated at ∼1600 cal yr BP and exceeded theglacier's Little Ice Age extent. We report sedimentary records from twolakes at slightly different elevations in an upland valley adjacent toKiattuut Sermiat. These reveal when the outlet glacier's surface elevationwas higher than during the Little Ice Age and constrain the associatedoutlet glacier surface elevation. We use bulk sediment geochemistry,magnetic susceptibility, color, texture, and the presence of aquatic plantmacrofossils to distinguish between till, glaciolacustrine sediments, andorganic lake sediments. Our 14C results above basal till recordingregional deglaciation skew slightly old due to a reservoir effect but aregenerally consistent with regional deglaciation occurring ∼ 11 000 cal yr BP. Neoglacial advance of Kiattuut Sermiat is recorded by deposition of glaciolacustrine sediments in the lower-elevation lake, which we infer was subsumed by an ice-dammed lake that formed along the glacier's margin just after ∼ 3900 cal yr BP. This timing is consistent with several other glacial records in Greenland showing neoglacial cooling driving advance between ∼ 4500–3000 cal yr BP. Given that glaciolacustrine sediments were deposited only in the lower-elevation lake, combined with glacial geomorphological evidence in the valley containing these lakes, we estimate the former ice margin's elevation to have been ∼ 670 m a.s.l., compared with ∼ 420 m a.s.l. today. The ice-dammed lake persisted until the glacier surface fell below this elevation at ∼ 1600 cal yr BP. The retreat timing contrasts with overall evidence for cooling and glacier advance in the region at that time, so we infer that Kiattuut Sermiat's retreat may have resulted from reduced snowfall amounts and/or local glaciological complexity. High sensitivity to precipitation changes could also explain the relatively limited Little Ice Age advance of Kiattuut Sermiat compared with the earlier neoglacial advance.more » « less
-
Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence ofSequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.more » « less
-
Abstract High-resolution analysis of a 3.80 m sediment core recovered from Deoria Tal, a mid-elevation lake located at 2393 m a.s.l. in the Garhwal Himalaya, documents long-term and abrupt hydroclimate fluctuations in northern India during the mid- to late Holocene. The sediment chronology, based on ten 14 C dates, indicates the core spans 5200 years. Non-destructive, radiological imaging approaches (X-ray fluorescence (XRF), X-ray imaging, and CT scans) were used to assess the response of the lake system to changing hydroclimatic conditions. Variations in elemental concentrations and sediment density evidenced notable hydroclimate change episodes centered at 4850, 4200, and 3100 cal yr BP. Elevated detrital input, greater sediment density, decreased lake ventilation, and lower autochthonous productivity reflects lake deepening between 4350 and 4200 cal yr BP. An abrupt shift in elemental concentrations and sediment density indicated the onset of lake drawdown at 4200 cal yr BP and a negative hydroclimate anomaly between 4200 and 4050 cal yr BP. Lower detrital flux, decreased sediment density, increased oxygenation, and higher autochthonous productivity, reflects a reduction in lake volume between 3200 and 3100 cal yr BP. The potential link between abrupt climate change at 4200 cal yr BP and the contraction of the Indus civilization is explored.more » « less
-
Abstract Changes in climate and fire regime have long been recognized as drivers of the postglacial vegetation history of Yellowstone National Park, but the effects of locally dramatic hydrothermal activity are poorly known. Multi-proxy records from Goose Lake have been used to describe the history of Lower Geyser Basin where modern hydrothermal activity is widespread. From 10,300 cal yr BP to 3800 cal yr BP, thermal waters discharged into the lake, as evidenced by the deposition of arsenic-rich sediment, fluorite mud, and relatively high δ 13 C sediment values. Partially thermal conditions affected the limnobiotic composition, but prevailing climate, fire regime, and rhyolitic substrate maintained Pinus contorta forest in the basin, as found throughout the region. At 3800 cal yr BP, thermal water discharge into Goose Lake ceased, as evidenced by a shift in sediment geochemistry and limnobiota. Pollen and charcoal data indicate concurrent grassland development with limited fuel biomass and less fire activity, despite late Holocene climate conditions that were conducive to expanded forest cover. The shift in hydrothermal activity at Goose Lake and establishment of the treeless geyser basin may have been the result of a tectonic event or change in hydroclimate. This record illustrates the complex interactions of geology and climate that govern the development of an active hydrothermal geo-ecosystem.more » « less
An official website of the United States government

