skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perspectives on Theoretical Models and Molecular Simulations of Polymer Brushes
Polymer brushes have witnessed extensive utilization and progress, driven by their distinct attributes in surface modification, tethered group functionality, and tailored interactions at the nanoscale, enabling them for various scientific and industrial applications of coatings, sensors, switchable/responsive materials, nanolithography, and lab-on-a-chips. Despite the wealth of experimental investigations into polymer brushes, this review primarily focuses on computational studies of antifouling polymer brushes with a strong emphasis on achieving a molecular-level understanding and structurally designing antifouling polymer brushes. Computational exploration covers three realms of thermotical models, molecular simulations, and machine-learning approaches to elucidate the intricate relationship between composition, structure, and properties concerning polymer brushes in the context of nanotribology, surface hydration, and packing conformation. Upon acknowledging the challenges currently faced, we extend our perspectives toward future research directions by delineating potential avenues and unexplored territories. Our overarching objective is to advance our foundational comprehension and practical utilization of polymer brushes for antifouling applications, leveraging the synergy between computational methods and materials design to drive innovation in this crucial field.  more » « less
Award ID(s):
2311985
PAR ID:
10499573
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Langmuir
Volume:
40
Issue:
2
ISSN:
0743-7463
Page Range / eLocation ID:
1487-1502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zwitterionic materials are an important class of antifouling biomaterials for various applications. Despite such desirable antifouling properties, molecular-level understanding of the structure–property relationship associated with surface chemistry/topology/hydration and antifouling performance still remains to be elucidated. In this work, we computationally studied the packing structure, surface hydration, and antifouling property of three zwitterionic polymer brushes of poly(carboxybetaine methacrylate) (pCBMA), poly(sulfobetaine methacrylate) (pSBMA), and poly((2-(methacryloyloxy)ethyl)phosporylcoline) (pMPC) brushes and a hydrophilic PEG brush using a combination of molecular mechanics (MM), Monte Carlo (MC), molecular dynamics (MD), and steered MD (SMD) simulations. We for the first time determined the optimal packing structures of all polymer brushes from a wide variety of unit cells and chain orientations in a complex energy landscape. Under the optimal packing structures, MD simulations were further conducted to study the structure, dynamics, and orientation of water molecules and protein adsorption on the four polymer brushes, while SMD simulations to study the surface resistance of the polymer brushes to a protein. The collective results consistently revealed that the three zwitterionic brushes exhibited stronger interactions with water molecules and higher surface resistance to a protein than the PEG brush. It was concluded that both the carbon space length between zwitterionic groups and the nature of the anionic groups have a distinct effect on the antifouling performance, leading to the following antifouling ranking of pCBMA > pMPC > pSBMA. This work hopefully provides some structural insights into the design of new antifouling materials beyond traditional PEG-based antifouling materials. 
    more » « less
  2. We herein report the fabrication of a Velcro-mimicking surface based on polymer brushes. Using poly(ε-caprolactone) (PCL) as the model polymer, polymer loop brushes (PLBs) and singly tethered polymer brushes (STPBs) with nearly identical tethering point density and brush heights were synthesized using a polymer single crystal (PSC)-assisted grafting-to method. Atomic force microscopy-based single molecular force spectroscopy (AFM-SMFS) and macroscale lap-shear experiments both demonstrated that the PLBs led to strong adhesion that is up to ∼10 times greater than the STPBs, which is attributed to the enriched chain entanglement between the probing polymer and the brushes. We envisage that our results will pave the way towards a new materials design for strong adhesives and nanocomposites. 
    more » « less
  3. The development of smart materials and surfaces with multiple antibacterial actions is of great importance for both fundamental research and practical applications, but this has proved to be extremely challenging. In this work, we proposed to integrate salt-responsive polyDVBAPS (poly(3-(dimethyl(4-vinylbenzyl) ammonio)propyl sulfonate)), antifouling polyHEAA (poly( N -hydroxyethyl acrylamide)), and bactericidal TCS (triclosan) into single surfaces by polymerizing and grafting polyDVBAPS and polyHEAA onto the substrate in a different way to form two types of polyDVBAPS/poly(HEAA- g -TCS) and poly(DVBAPS- b -HEAA- g -TCS) brushes with different hierarchical structures, as confirmed by X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM), and ellipsometry. Both types of polymer brushes demonstrated their tri-functional antibacterial activity to resist bacterial attachment by polyHEAA, to release ∼90% of dead bacteria from the surface by polyDVBAPS, and to kill ∼90% of bacteria on the surface by TCS. Comparative studies also showed that removal of any component from polyDVBAPS/poly(HEAA- g -TCS) and poly(DVBAPS- b -HEAA- g -TCS) compromised the overall antibacterial performance, further supporting a synergistic effect of the three compatible components. More importantly, the presence of salt-responsive polyDVBAPS allowed both brushes to regenerate with almost unaffected antibacterial capacity for reuse in multiple kill-and-release cycles. The tri-functional antibacterial surfaces present a promising design strategy for further developing next-generation antibacterial materials and coatings for antibacterial applications. 
    more » « less
  4. Abstract Piezo‐ and pyroelectric materials are of interest, for example, for energy harvesting applications, for the development of tactile sensors, as well as neuromorphic computing. This study reports the observation of pyro‐ and piezoelectricity in thin surface‐attached polymer brushes containing zwitterionic and electrolytic side groups that are prepared via surface‐initiated polymerization. The pyro‐ and piezoelectric properties of the surface‐grafted polyelectrolyte brushes are found to sensitively depend on and can be tuned by variation of the counterion. The observed piezo‐ and pyroelectric properties reflect the structural complexity of polymer brushes, and are attributed to a complex interplay of the non‐uniform segment density within these films, together with a non‐uniform distribution of counterions and specific ion effects. The fabrication of thin pyroelectric films by surface‐initiated polymerization is an important addition to the existing strategies toward such materials. Surface‐initiated polymerization, in particular, allows for facile grafting of polar thin polymer films from a wide range of substrates via a straightforward two‐step protocol that obviates the need for multistep laborious synthetic procedures or thin film deposition protocols. The ability to produce polymer brushes with piezo‐ and pyroelectric properties opens up new avenues of application of these materials, for example, in energy harvesting or biosensing. 
    more » « less
  5. Abstract Polymer‐grafted hybrid materials have been ubiquitously employed in various engineering applications. The design of these hybrid materials with superior performances requires a molecularly detailed understanding of the structure and dynamics of the polymer brushes and their interactions with the grafting substrate. Molecular dynamics (MD) simulations are very well suited for the study of these materials which can provide molecular insights into the effects of polymer composition and length, grafting density, substrate composition and curvatures, and nanoconfinement. However, few existing tools are available to generate such systems, which would otherwise reduce the barrier of preparation for such systems to enable high throughput simulations. Here polyGraft, a general, flexible, and easy to use Python program, is introduced for automated generation of molecular structure and topology of polymer grafted hybrid materials for MD simulations purposes, ranging from polymer brushes grafted to hard substrates, to densely grafted bottlebrush polymers. polyGraft is openly accessible on GitHub (https://github.com/nanogchen/polyGraft). 
    more » « less