skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bilayer Hydrogels by Reactive-Induced Macrophase Separation
Bilayer hydrogels encoded with smart functions have emerged as promising soft materials for engineered biological tissues and human-machine interfaces, due to the versatility and flexibility in designing their mechanical and chemical properties. However, conventional fabrication strategies often require multiple complicated steps to create an anisotropic bilayer structure with poor interfaces, which significantly limit the scope of bilayer hydrogel applications. Here, we reported a general, one-pot, macrophase separation strategy to fabricate a family of bilayer hydrogels made of vinyl and styryl monomers with a seamless interface and a controllable layer separation efficiency (20–99%). The working principle of a macrophase separation strategy allows for the decoupling of the two gelation processes to form distinct vinyl- and styryl-enriched layers by manipulating competitive polymerization reactions between vinyl and styryl monomers. This work presents a straightforward approach and a diverse range of radical monomers, which can be utilized to create next-generation bilayer hydrogels, beyond a few available today.  more » « less
Award ID(s):
2311985
PAR ID:
10499578
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Macro Letters
Volume:
12
Issue:
5
ISSN:
2161-1653
Page Range / eLocation ID:
598-604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrogels and polydimethylsiloxane (PDMS) are complementary to each other, since the hydrophobic PDMS provides a more stable and rigid substrate, while the water‐rich hydrogel possesses remarkable hydrophilicity, biocompatibility, and similarity to biological tissues. Herein a transparent and stretchable covalently bonded PDMS‐hydrogel bilayer (PHB) structure is prepared via in situ free radical copolymerization of acrylamide and allylamine‐exfoliated‐ZrP (AA‐e‐ZrP) on a functionalized PDMS surface. The AA‐e‐ZrP serves as cross‐linking nano‐patches in the polymer gel network. The covalently bonded structure is constructed through the addition reaction of vinyl groups of PDMS surface and monomers, obtaining a strong interfacial adhesion between the PDMS and the hydrogel. A mechanical‐responsive wrinkle surface, which exhibs transparency change mechanochromism, is created via introducing a cross‐linked polyvinyl alcohol film atop the PHB structure. A finite element model is implemented to simulate the wrinkle formation process. The implication of the present finding for the interfacial design of the PHB and PDMS‐hydrogel‐PVA trilayer (PHPT) structures is discussed. 
    more » « less
  2. ABSTRACT A new strategy is reported to accessα,ω‐dithiol polymer building blocks with tunable molecular weights and compositions for the preparation of random multiblock copolymers based on styrenic, acrylic, and siloxane repeat units. This facile synthetic approach provides access to dithiols through a two‐step process: (1) an initial copolymerization of vinyl monomers with ethyl lipoate followed by (2) disulfide bond reduction, producing dithiol terminated polymer products. Thiol‐terminated polymers are easily prepared over a wide range of molecular weights (2–32 kDa) by simply controlling the feed ratio of vinyl monomer to ethyl lipoate. Mixtures of these linear dithiol‐terminated building blocks were repolymerized via oxidative coupling to create random multiblock copolymers with high molecular weights (68–95 kDa) and controlled degradability. In summary, this approach for preparing and recombining telechelic dithiol polymers creates opportunities to manipulate the mechanical and physical properties of multiblock copolymers using a synthetically simple and versatile platform. 
    more » « less
  3. Abstract The crystal structure of a commercially available anthracene derivative, anthracene‐9‐thiocarboxamide, is reported here for the first time. The compound undergoes a [4+4] cycloaddition in the solid state to afford facile synthesis of the cycloadduct (CA). The cycloaddition is also reversible in the solid state using heat or mechanical force. Due to the presence of unpaired, strong hydrogen‐bond donor atoms on the CA, significant solvatomorphism is achieved, and components of the solvatomorphs self‐assemble into four different classes of supramolecular structures. The CA readily crystallizes with a variety of structurally‐diverse solvents including those containing oxygen‐, nitrogen‐, or pi‐acceptors. Some of the solvents the CA crystallized with include thiophene, benzene, and the three xylene isomers; thus, the CA was employed in industrially‐relevant solvent separation. However, in competition studies, the CA did not exhibit selectivity. Lastly, it is demonstrated that the CA crystallizes with vinyl‐containing monomers and is currently the only compound that crystallizes with both widely used monomers 4‐vinylpyridine and styrene. Solid‐state complexation of the CA with the monomers affords over a 50 °C increase in the monomer's thermal stabilities. The strategy of designing molecules with unused donors can be applied to achieve separations or volatile liquid stabilization. 
    more » « less
  4. The advantageous material properties that arise from combining non-polar olefin monomers with activated vinyl monomers have led to considerable progress in the development of viable copolymerization strategies. However, unfavorable reactivity ratios during radical copolymerization of the two result in low levels of olefin incorporation, and an abundance of deleterious side reactions arise when attempting to incorporate many polar vinyl monomers via the coordination–insertion pathway typically applied to olefins. We reasoned that design of an activated monomer that is not only well-suited for radical copolymerization with polar vinyl monomers ( e.g. , acrylates) but is also capable of undergoing post-polymerization modification to unveil an olefin repeat unit would allow for the preparation of statistical olefin-acrylate copolymers. Herein, we report monomers fitting these criteria and introduce a post-polymerization modification strategy based on single-electron transfer (SET)-induced decarboxylative radical generation directly on the polymer backbone. Specifically, SET from an organic photocatalyst (eosin Y) to a polymer containing redox-active phthalimide ester units under green light leads to the generation of reactive carbon-centered radicals on the polymer backbone. We utilized this approach to generate statistical olefin-acrylate copolymers by performing the decarboxylation in the presence of a hydrogen atom donor such that the backbone radical is capped by a hydrogen atom to yield an ethylene or propylene repeat unit. This method allows for the preparation of copolymers with previously inaccessible comonomer distributions and demonstrates the promise of applying SET-based transformations to address long-standing challenges in polymer chemistry. 
    more » « less
  5. Abstract Inorganic salts usually demonstrate simple phasal behaviors in dilute aqueous solution mainly involving soluble (homogeneous) and insoluble (macrophase separation) scenarios. Herein, we report the discovery of complex phase behavior involving multiple phase transitions of clear solution – macrophase separation – gelation – solution – macrophase separation in the dilute aqueous solutions of a structurally well-defined molecular cluster [Mo7O24]6−macroanions with the continuous addition of Fe3+. No chemical reaction was involved. The transitions are closely related to the strong electrostatic interaction between [Mo7O24]6−and their Fe3+counterions, the counterion-mediated attraction and the consequent charge inversion, leading to the formation of linear/branched supramolecular structures, as confirmed by experimental results and molecular dynamics simulations. The rich phase behavior demonstrated by the inorganic cluster [Mo7O24]6−expands our understanding of nanoscale ions in solution. 
    more » « less