skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Field tests of a self-sintering, anti-soiling, self-cleaning, nanoporous metal oxide, transparent thin film coating for solar photovoltaic modules
Nanoporous metal oxide ceramic coatings, deposited using sol-gel techniques, have the potential to impart self-sintering and self-cleaning coatings to silicon oxide glass. When used on solar photovoltaic modules, these coatings can impart anti-static properties, improve wetting behavior, and degrade soiling deposits through photocatalytic activity. This paper reports on a field trial of a mixed silicon and titanium oxide thin film coating conducted in the upper midwestern U.S. Coated modules demonstrated increased electrical generation relative to uncoated controls. The results are encouraging for the commercialization of this coating technology, and provide a strong motivation for further research and development efforts.  more » « less
Award ID(s):
2201631 2000714
PAR ID:
10499615
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Solar Energy Materials and Solar Cells
Volume:
262
Issue:
C
ISSN:
0927-0248
Page Range / eLocation ID:
112560
Subject(s) / Keyword(s):
Solar Soiling Self-cleaning Coating Nanoporous Sol-gel
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dropwise condensation is well known to result in better heat transfer performance owing to efficient condensate/droplet removal, which can be harnessed in various industrial heat/mass transfer applications such as power generation and conversion, water harvesting/desalination, and electronics thermal management. The key to enhancing condensation via the dropwise mode is thin low surface energy coatings (<100 nm) with low contact angle hysteresis. Ultrathin (<5 nm) silane self assembled monolayers (or SAMs) have been widely studied to promote dropwise condensation due to their minimal thermal resistance and scalable integration processes. Such thin coatings typically degrade within an hour during condensation of water vapor. After coating failure, water vapor condensation transitions to the inefficient filmwise mode with poor heat transfer performance. We enhance silane SAM quality and durability during water vapor condensation on copper compared to state of the art silane coatings on metal surfaces. We achieve this via (i) surface polishing to sub-10 nm levels, (ii) pure oxygen plasma surface treatment, and (iii) silane coating integration with the copper substrate in an anhydrous/moisture-free environment. The resulting silane SAM has low contact angle hysteresis (≈20°) and promotes efficient dropwise condensation of water for >360 hours without any visible sign of coating failure/degradation in the absence of non condensable gases. We further demonstrate enhanced heat transfer performance (≈5 7× increase over filmwise condensation) over an extended period of time. Surface characterization data post-condensation leads us to propose that in the absence of non-condensable gases in the vapor environment, the silane SAM degrades due to reduction and subsequent dissolution of copper oxide at the oligomer-substrate interface. The experiments also indicate that the magnitude of surface subcooling (or condensation rate) affects the rate of coating degradation. This work identifies a pathway to durable dropwise promoter coatings that will enable efficient heat transfer in industrial applications. 
    more » « less
  2. Accumulated dust on solar cover glass reduces transmittance, leading to decreased energy efficiency of photovoltaic (PV) modules. Hydrophobic coatings on solar cover glass have been shown to provide anti-soiling properties when exposed to a condensing environment (e.g. dew). The addition of hydrophilic features along the top edge of the hydrophobic coated glass enhances condensation rates and can be used to achieve self-cleaning of the surfaces. However, to date, relatively long times have been required to clean the surfaces. In this study, we developed a new design for hydrophilic features that reduce the time required to clean the surface in laboratory tests as measured by laser scanning microscopy, optical photographs and UV–vis spectroscopy. The dagger-shaped features improve self-cleaning performance by a combination of three factors: a silica nanoparticle (NP) hydrophilic coating which enhances condensation rate due to a low water contact angle (WCA) and nano-scale porosity; the stepwise transition from the low WCA silica NP region to the high WCA silanized hydrophobic region via a bare glass transition zone; and the pointed shape of the hydrophobic dagger features which further minimizes the barrier for transport of droplets from the condensing region to the high-mobility, hydrophobic, region of the surface. The hydrophilic silica nanoparticle-coated dagger features not only improve the self-cleaning efficiency of the hydrophobic surfaces but also increase the overall amount of water harvested. Such coating designs provide an effective approach to reducing maintenance costs as well as increasing the overall energy output of PV panels. 
    more » « less
  3. Abstract Durable hydrophobic materials have attracted considerable interest in the last century. Currently, the most popular strategy to achieve hydrophobic coating durability is through the combination of a perfluoro-compound with a mechanically robust matrix to form a composite for coating protection. The matrix structure is typically large (thicker than 10 μm), difficult to scale to arbitrary materials, and incompatible with applications requiring nanoscale thickness such as heat transfer, water harvesting, and desalination. Here, we demonstrate durable hydrophobicity and superhydrophobicity with nanoscale-thick, perfluorinated compound-free polydimethylsiloxane vitrimers that are self-healing due to the exchange of network strands. The polydimethylsiloxane vitrimer thin film maintains excellent hydrophobicity and optical transparency after scratching, cutting, and indenting. We show that the polydimethylsiloxane vitrimer thin film can be deposited through scalable dip-coating on a variety of substrates. In contrast to previous work achieving thick durable hydrophobic coatings by passively stacking protective structures, this work presents a pathway to achieving ultra-thin (thinner than 100 nm) durable hydrophobic films. 
    more » « less
  4. Photocatalytic self-cleaning coatings with a high surface area are important for a wide range of applications, including optical coatings, solar panels, mirrors, etc. Here, we designed a highly porous TiO2 coating with photoinduced self-cleaning characteristics and very high hydrophilicity. This was achieved using the swelling-assisted sequential infiltration synthesis (SIS) of a block copolymer (BCP) template, which was followed by polymer removal via oxidative thermal annealing. The quartz crystal microbalance (QCM) was employed to optimize the infiltration process by estimating the mass of material infiltrated into the polymer template as a function of the number of SIS cycles. This adopted swelling-assisted SIS approach resulted in a smooth uniform TiO2 film with an interconnected network of pores. The synthesized film exhibited good crystallinity in the anatase phase. The resulting nanoporous TiO2 coatings were tested for their functional characteristics. Exposure to UV irradiation for 1 h induced an improvement in the hydrophilicity of coatings with wetting angle reducing to unmeasurable values upon contact with water droplets. Furthermore, their self-cleaning characteristics were tested by measuring the photocatalytic degradation of methylene blue (MB). The synthesized porous TiO2 nanostructures displayed promising photocatalytic activity, demonstrating the degradation of approximately 92% of MB after 180 min under ultraviolet (UV) light irradiation. Thus, the level of performance was comparable to the photoactivity of commercial anatase TiO2 nanoparticles of the same quantity. Our results highlight a new robust approach for designing hydrophilic self-cleaning coatings with controlled porosity and composition. 
    more » « less
  5. We present two prescriptions for broadband (), millimeter-wave antireflection coatings for cryogenic, sintered polycrystalline aluminum oxide optics: one for large-format (700 mm diameter) planar and plano–convex elements, the other for densely packed arrays of quasi-optical elements—in our case, 5 mm diameter half-spheres (called “lenslets”). The coatings comprise three layers of commercially available, polytetrafluoroethylene-based, dielectric sheet material. The lenslet coating is molded to fit the 150 mm diameter arrays directly, while the large-diameter lenses are coated using a tiled approach. We review the fabrication processes for both prescriptions, then discuss laboratory measurements of their transmittance and reflectance. In addition, we present the inferred refractive indices and loss tangents for the coating materials and the aluminum oxide substrate. We find that at 150 GHz and 300 K the large-format coating sample achievestransmittance, and the lenslet coating sample achievestransmittance. 
    more » « less