Abstract Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment.
more »
« less
Weathering Incongruence in Mountainous Mediterranean Climates Recorded by Stream Lithium Isotope Ratios
Abstract Lithium isotope ratios (δ7Li) of rivers are increasingly serving as a diagnostic of the balance between chemical and physical weathering contributions to overall landscape denudation rates. Here, we show that intermediate weathering intensities and highly enriched stream δ7Li values typically associated with lowland floodplains can also describe small upland watersheds subject to cool, wet climates. This behavior is revealed by stream δ7Li between +22.4 and +23.5‰ within a Critical Zone observatory located in the Cévennes region of southern France, where dilute stream solute concentrations and significant atmospheric deposition otherwise mask evidence of incongruence. The water‐rock reaction pathways underlying this behavior are quantified through a multicomponent, isotope‐enabled reactive transport model. Using geochemical characterization of soil profiles, bedrock, and long‐term stream samples as constraints, we evolve the simulation from an initially unweathered granite to a steady state weathering profile which reflects the balance between (a) fluid infiltration and drainage and (b) bedrock uplift and soil erosion. Enriched stream δ7Li occurs because Li is strongly incorporated into actively precipitating secondary clay phases beyond what prior laboratory experiments have suggested. Chemical weathering incongruence is maintained despite relatively slow reaction rates and moderate clay accumulation due to a combination of two factors. First, reactive primary mineral phases persist across the weathering profile and effectively “shield” the secondary clays from resolubilization due to their greater solubility. Second, the clays accumulating in the near‐surface profile are relatively mature weathering byproducts. These factors promote characteristically low total dissolved solute export from the catchment despite significant input of exogenous dust.
more »
« less
- Award ID(s):
- 2047318
- PAR ID:
- 10499626
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 129
- Issue:
- 3
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Early diagenetic forward and reverse weathering reactions play a significant role in controlling alkalinity fluxes and silica, alkali metal and alkaline earth metal cycling in coastal systems. In Kongsfjorden, Svalbard, the inputs of autochthonous biogenic debris (diatomaceous silica) and allochthonous lithogenic material of varying reactivity (dominated by clays, especially illite and chlorite, and primary aluminosilicates, mostly plagioclase) drive complex balances of diagenetic silicate reactions in sediments. The rapid dissolution of reactive silica results in the release of dissolved silica (Sid) into pore‐waters and sustains elevated benthic Sidfluxes (−0.2 to −0.8 mmol m−2 d−1), which are on the upper end of values previously determined for Arctic environments. Increases with depth in pore‐water lithium (Li+), potassium, magnesium, and barium concentrations within the top centimeters provided evidence for forward weathering of clays quickly upon burial. Due to the prevalent occurrence of forward weathering, the benthic net Li+flux was associated with a light isotope signal. Decreases in pore‐water rubidium concentrations with depth at the near‐glacier station, elevated ratios of the authigenically altered silica to the biogenic silica pool at all sites, and small increases of pore‐water δ7Li values with depth showed that reverse weathering also takes place. Anoxic incubation of diatom frustule probes provided further evidence for the neoformation of cation‐rich clays. The superposition of reverse and forward weathering results in cryptic silica and cation cycling that muted net benthic fluxes. In deeper sediments, changes in pore‐water solute patterns indicated an interconnected occurrence of reverse and forward weathering, potentially driven by reactive silica‐limitation.more » « less
-
The snowball Earth hypothesis predicts that continental chemical weathering diminished substantially during, but rebounded strongly after, the Marinoan ice age some 635 Mya. Defrosting the planet would result in a plume of fresh glacial meltwater with a different chemical composition from underlying hypersaline seawater, generating both vertical and lateral salinity gradients. Here, we test the plumeworld hypothesis using lithium isotope compositions in the Ediacaran Doushantuo cap dolostone that accumulated in the aftermath of the Marinoan snowball Earth along a proximal–distal (nearshore–offshore) transect in South China. Our data show an overall decreasing δ7Li trend with distance from the shoreline, consistent with the variable mixing of a meltwater plume with high δ7Li (due to incongruent silicate weathering on the continent) and hypersaline seawater with low δ7Li (due to synglacial distillation). The evolution of low δ7Li of synglacial seawater, as opposed to the modern oceans with high δ7Li, was likely driven by weak continental chemical weathering coupled with strong reverse weathering on the seafloor underneath silica-rich oceans. The spatial pattern of δ7Li is also consistent with the development and then collapse of the meltwater plume that occurred at the time scale of cap dolostone accumulation. Therefore, the δ7Li data are consistent with the plumeworld hypothesis, considerably reduced chemical weathering on the continent during the Marinoan snowball Earth, and enhanced reverse weathering on the seafloor of Precambrian oceans.more » « less
-
Abstract Antecedent hydrological conditions are recorded through the evolution of dissolved lithium isotope signatures (Li) by juxtaposing two storm events in an upland watershed subject to a Mediterranean climate. Discharge and Li are negatively correlated in both events, but mean Li ratios and associated ranges of variation are distinct between them. We apply a previously developed reactive transport model (RTM) for the site to these event‐scale flow perturbations, but observed shifts in stream Li are not reproduced. To reconcile the stability of the subsurface solute weathering profile with our observations of dynamic stream Li signatures, we couple the RTM to a distribution of fluid transit times that evolve based on storm hydrographs. The approach guides appropriate flux‐weighting of fluid from the RTM over a range of flow path lengths, or equivalently fluid residence times. This flux‐weighted RTM approach accurately reproduces dynamic storm Li‐discharge patterns distinguished by the antecedent conditions of the watershed.more » « less
-
Silicate weathering and organic carbon (OC) burial in soil regulate atmospheric CO2, but their influence on each other remains unclear. Generally, OC oxidation can generate acids that drive silicate weathering, yet clay minerals that form during weathering can protect OC and limit oxidation. This poses a conundrum where clay formation and OC preservation either compete or cooperate. Debate remains about their relative contributions because quantitative tools to simultaneously probe these processes are lacking while those that exist are often not measured in concert. Here we demonstrate that Li isotope ratios of sediment, commonly used to trace clay formation, can help constrain OC cycling. Measurements of river suspended sediment from two watersheds of varying physiography and analysis of published data from Hawaii soil profiles show negative correlations between solid-phase d7Li values and OC content, indicating the association of clay mineral formation with OC accumulation. Yet, the localities differ in their ranges of d7Li values and OC contents, which we interpret with a model of soil formation. We find that temporal trends of Li isotopes and OC are most sensitive to mineral dissolution/clay formation rates, where higher rates yield greater OC stocks and lower d7Li values. Whereas OC-enhanced dissolution primarily dictates turnover times of OC and silicate minerals, clay protection distinctly modifies soil formation pathways and is likely required to explain the range of observations. These findings underscore clay mineral formation, driven primarily by bedrock chemistry and secondarily by climate, as a principal modulator of weathering fluxes and OC accumulation in soil.more » « less
An official website of the United States government
