Based on the uniformization theorems of gravitation instantons by Chen–Chen [Acta Math. 227 (2021), pp. 263–307], Chen–Viaclovsky [Gravitational instantons with quadratic volume growth, 2021], Collins–Jacob–Lin [Forum Math. Sigma (2021)], and Hein–Sun–Viaclovsky–Zhang [Gravitational instantons and del Pezzo surfaces], we prove that the period maps for the , , and gravitational instantons are surjective. In particular, the period domains of these gravitational instantons are exactly their moduli spaces.
more »
« less
Gravitational instantons with quadratic volume growth
Abstract There are two known classes of gravitational instantons with quadratic volume growth at infinity, known as type and . Gravitational instantons of type were previously classified by Chen–Chen. In this paper, we prove a classification theorem for gravitational instantons. We determine the topology and prove existence of “uniform” coordinates at infinity for both ALG and gravitational instantons. We also prove a result regarding the relationship between ALG gravitational instantons of order and those of order 2.
more »
« less
- PAR ID:
- 10499668
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 109
- Issue:
- 4
- ISSN:
- 0024-6107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG ∗ manifolds in dimension four.We then give several applications of this theory.First, we show the existence of harmonic functions with prescribed asymptotics at infinity.A corollary of this is a non-existence result for ALG ∗ manifolds with non-negative Ricci curvature having group Γ = { e } \Gamma=\{e\} at infinity.Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG ∗ manifold.A corollary of this is vanishing of the first Betti number for any ALG ∗ manifold with non-negative Ricci curvature.Another application of our analysis is to determine the optimal order of ALG ∗ gravitational instantons.more » « less
-
Abstract In a previous paper [7], the first two authors classified complete Ricci-flat ALF Riemannian 4-manifolds that are toric and Hermitian, but non-Kähler. In this article, we consider general Ricci-flat metrics on these spaces that are close to a given such gravitational instanton with respect to a norm that imposes reasonable fall-off conditions at infinity. We prove that any such Ricci-flat perturbation is necessarily Hermitian and carries a bounded, non-trivial Killing vector field. With mild additional hypotheses, we are then able to show that the new Ricci-flat metric must actually be one of the known gravitational instantons classified in [7].more » « less
-
Abstract We compute families of solutions to the Einstein vacuum equations of the type of Brill waves, but with slow fall-off towards spatial infinity. We prove existence and uniqueness of solutions for physical data and numerically construct some representative solutions. We numerically construct an explicit example with slow-off which does not exhibit antipodal symmetry at spatial infinity.more » « less
-
ABSTRACT We study extensions of Turán Theorem in edge‐weighted settings. A particular case of interest is when constraints on the weight of an edge come from the order of the largest clique containing it. These problems are motivated by Ramsey‐Turán type problems. Some of our proofs are based on the method of graph Lagrangians, while the other proofs use flag algebras. Using these results, we prove several new upper bounds on the Ramsey‐Turán density of cliques. Other applications of our results are in a recent paper of Balogh, Chen, McCourt, and Murley.more » « less
An official website of the United States government
