We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .
more »
« less
Period domains for gravitational instantons
Based on the uniformization theorems of gravitation instantons by Chen–Chen [Acta Math. 227 (2021), pp. 263–307], Chen–Viaclovsky [Gravitational instantons with quadratic volume growth, 2021], Collins–Jacob–Lin [Forum Math. Sigma (2021)], and Hein–Sun–Viaclovsky–Zhang [Gravitational instantons and del Pezzo surfaces], we prove that the period maps for the , , and gravitational instantons are surjective. In particular, the period domains of these gravitational instantons are exactly their moduli spaces.
more »
« less
- Award ID(s):
- 2204109
- PAR ID:
- 10634838
- Publisher / Repository:
- The American Mathematical Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- Volume:
- 376
- Issue:
- 1071
- ISSN:
- 0002-9947
- Page Range / eLocation ID:
- 5461 to 5501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Let be an elliptic curve and let be an odd prime of good reduction for . Let be an imaginary quadratic field satisfying the classical Heegner hypothesis and in which splits. The goal of this paper is two-fold: (1) we formulate a -adic BSD conjecture for the -adic -function introduced by Bertolini–Darmon–Prasanna [Duke Math. J. 162 (2013), pp. 1033–1148]; and (2) for an algebraic analogue of , we show that the “leading coefficient” part of our conjecture holds, and that the “order of vanishing” part follows from the expected “maximal non-degeneracy” of an anticyclotomic -adic height. In particular, when the Iwasawa–Greenberg Main Conjecture is known, our results determine the leading coefficient of at up to a -adic unit. Moreover, by adapting the approach of Burungale–Castella–Kim [Algebra Number Theory 15 (2021), pp. 1627–1653], we prove the main conjecture for supersingular primes under mild hypotheses. In the -ordinary case, and under some additional hypotheses, similar results were obtained by Agboola–Castella [J. Théor. Nombres Bordeaux 33 (2021), pp 629–658], but our method is new and completely independent from theirs, and apply to all good primes.more » « less
-
We determine for which exotic tori of dimension the homomorphism from the group of isotopy classes of orientation-preserving diffeomorphisms of to given by the action on the first homology group is split surjective. As part of the proof we compute the mapping class group of all exotic tori that are obtained from the standard torus by a connected sum with an exotic sphere. Moreover, we show that any nontrivial -action on agrees on homology with the standard action, up to an automorphism of . When combined, these results in particular show that many exotic tori do not admit any nontrivial differentiable action by .more » « less
-
We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness.more » « less
-
We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.more » « less
An official website of the United States government

