skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Period domains for gravitational instantons
Based on the uniformization theorems of gravitation instantons by Chen–Chen [Acta Math. 227 (2021), pp. 263–307], Chen–Viaclovsky [Gravitational instantons with quadratic volume growth, 2021], Collins–Jacob–Lin [Forum Math. Sigma (2021)], and Hein–Sun–Viaclovsky–Zhang [Gravitational instantons and del Pezzo surfaces], we prove that the period maps for the A L H ∗<#comment/> \mathrm {ALH}^{\ast } , A L G \mathrm {ALG} , and A L G ∗<#comment/> \mathrm {ALG}^{\ast } gravitational instantons are surjective. In particular, the period domains of these gravitational instantons are exactly their moduli spaces.  more » « less
Award ID(s):
2204109
PAR ID:
10634838
Author(s) / Creator(s):
;
Publisher / Repository:
The American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
376
Issue:
1071
ISSN:
0002-9947
Page Range / eLocation ID:
5461 to 5501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  2. Let E / Q E/\mathbf {Q} be an elliptic curve and let p p be an odd prime of good reduction for E E . Let K K be an imaginary quadratic field satisfying the classical Heegner hypothesis and in which p p splits. The goal of this paper is two-fold: (1) we formulate a p p -adic BSD conjecture for the p p -adic L L -function L p B D P L_\mathfrak {p}^{\mathrm {BDP}} introduced by Bertolini–Darmon–Prasanna [Duke Math. J. 162 (2013), pp. 1033–1148]; and (2) for an algebraic analogue F p ¯<#comment/> B D P F_{\overline {\mathfrak {p}}}^{\mathrm {BDP}} of L p B D P L_\mathfrak {p}^{\mathrm {BDP}} , we show that the “leading coefficient” part of our conjecture holds, and that the “order of vanishing” part follows from the expected “maximal non-degeneracy” of an anticyclotomic p p -adic height. In particular, when the Iwasawa–Greenberg Main Conjecture ( F p ¯<#comment/> B D P ) = ( L p B D P ) (F_{\overline {\mathfrak {p}}}^{\mathrm {BDP}})=(L_\mathfrak {p}^{\mathrm {BDP}}) is known, our results determine the leading coefficient of L p B D P L_{\mathfrak {p}}^{\mathrm {BDP}} at T = 0 T=0 up to a p p -adic unit. Moreover, by adapting the approach of Burungale–Castella–Kim [Algebra Number Theory 15 (2021), pp. 1627–1653], we prove the main conjecture for supersingular primes p p under mild hypotheses. In the p p -ordinary case, and under some additional hypotheses, similar results were obtained by Agboola–Castella [J. Théor. Nombres Bordeaux 33 (2021), pp 629–658], but our method is new and completely independent from theirs, and apply to all good primes. 
    more » « less
  3. We determine for which exotic tori T \mathcal {T} of dimension d ≠<#comment/> 4 d\neq 4 the homomorphism from the group of isotopy classes of orientation-preserving diffeomorphisms of T \mathcal {T} to S L d ( Z ) \mathrm {SL}_d(\mathbf {Z}) given by the action on the first homology group is split surjective. As part of the proof we compute the mapping class group of all exotic tori T \mathcal {T} that are obtained from the standard torus by a connected sum with an exotic sphere. Moreover, we show that any nontrivial S L d ( Z ) \mathrm {SL}_d(\mathbf {Z}) -action on T \mathcal {T} agrees on homology with the standard action, up to an automorphism of S L d ( Z ) \mathrm {SL}_d(\mathbf {Z}) . When combined, these results in particular show that many exotic tori do not admit any nontrivial differentiable action by S L d ( Z ) \mathrm {SL}_d(\mathbf {Z})
    more » « less
  4. We consider minimizing harmonic maps u u from Ω<#comment/> ⊂<#comment/> R n \Omega \subset \mathbb {R}^n into a closed Riemannian manifold N \mathcal {N} and prove: 1. an extension to n ≥<#comment/> 4 n \geq 4 of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold N \mathcal {N} is finite, we have\[ H n −<#comment/> 3 ( sing ⁡<#comment/> u ) ≤<#comment/> C ∫<#comment/> ∂<#comment/> Ω<#comment/> | ∇<#comment/> T u | n −<#comment/> 1 d H n −<#comment/> 1 ; \mathcal {H}^{n-3}(\operatorname {sing} u) \le C \int _{\partial \Omega } |\nabla _T u|^{n-1} \,\mathrm {d}\mathcal {H}^{n-1}; \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is N = S 2 \mathcal {N}=\mathbb {S}^2 we obtain that the singular set of u u is stable under small W 1 , n −<#comment/> 1 W^{1,n-1} -perturbations of the boundary data. In dimension n = 3 n=3 both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space W s , p W^{s,p} with s ∈<#comment/> ( 1 2 , 1 ] s \in (\frac {1}{2},1] and p ∈<#comment/> [ 2 , ∞<#comment/> ) p \in [2,\infty ) satisfying s p ≥<#comment/> 2 sp \geq 2 . We also discuss sharpness. 
    more » « less
  5. We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map f W l o c 1 , n ( Ω , R n ) f \in W^{1,n}_{\mathrm {loc}}(\Omega , \mathbb {R}^n) from a domain Ω R n \Omega \subset \mathbb {R}^n satisfies the estimate | D f ( x ) | n K J f ( x ) + Σ ( x ) | f ( x ) y 0 | n \lvert Df(x) \rvert ^n \leq K J_f(x) + \Sigma (x) \lvert f(x) - y_0 \rvert ^n at almost every x Ω x \in \Omega for some K 1 K \geq 1 , y 0 R n y_0\in \mathbb {R}^n and Σ L l o c 1 + ε ( Ω ) \Sigma \in L^{1+\varepsilon }_{\mathrm {loc}}(\Omega ) , then f 1 { y 0 } f^{-1}\{y_0\} is discrete, the local index i ( x , f ) i(x, f) is positive in f 1 { y 0 } f^{-1}\{y_0\} , and every neighborhood of a point of f 1 { y 0 } f^{-1}\{y_0\} is mapped to a neighborhood of y 0 y_0 . Assuming this estimate for a fixed K K at every y 0 R n y_0 \in \mathbb {R}^n is equivalent to assuming that the map f f is K K -quasiregular, even if the choice of Σ \Sigma is different for each y 0 y_0 . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of K K -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem. 
    more » « less