skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Salinity on the Erosion Threshold, Yield Stress, and Gelatinous State of a Cohesive Clay
Abstract Clay is the main component that contributes to sediment cohesiveness. Salinity impacts its transport, which controls the electrochemical force among the sediment grains. Here, we quantify the impacts of salinity on the erosion threshold, yield stress, and the microstructures of a fluorescently labeled smectite clay, laponite, by combining flume experiments, rheometer measurements, and macro‐ and microscopic imaging. We show that the critical shear stress for clay erosion,τb,crit, increases by one order of magnitude with increasing salinity when salinity <1.5 ppt and slightly decreases when salinity >1.5 ppt showing a weaker dependency upon salinity. We further show that the yield stress,τy, of the clay remains roughly a constant at salinity less than 1.5 ppt and decreases by over one order of magnitude at salinity larger than 1.5 ppt. This change in the dependency ofτb,critand yield stress on salinity corresponds to a change in the gelatinous state of clay, from gel‐like structures to phase‐separated structures as salinity increases. Our results provide a quantitative characterization of the dependency of clay erosion threshold and yield stress on salinity and highlight the importance of the clay gelatinous state in controlling clay transport.  more » « less
Award ID(s):
2150796
PAR ID:
10499676
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
129
Issue:
3
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sand‐clay mixtures are common in both freshwater and saltwater environments, yet how they behave under different levels of salinity remains poorly understood. Here, we demonstrate the impact of salinity on the rheological properties and erosion threshold of sand‐clay mixtures through systematically controlled flume experiments and rheological measurements. Mixtures with a representative bentonite‐to‐sand ratio typical of natural estuarine and coastal sediments were prepared at salinities ranging from 0 to 35 parts per thousand (ppt), spanning freshwater to seawater conditions. We measured viscosity, flow‐point stress, and yield stress of the mixtures using a rheometer and determined the critical bed shear stress in a water‐recirculating flume. Our results indicate that as salinity increases from 0 to 35 ppt, the critical bed shear stress decreases by about two orders of magnitude, from about 60 Pa at 0 ppt to less than 1 Pa at 35 ppt. Similarly, both the flow‐point stress and yield stress decreased by over two orders of magnitude with increasing salinity. These changes correspond to a salinity‐induced transition of the sand‐bentonite mixture from a cohesive, strong‐gel state in freshwater (0 ppt), to a weak‐gel state between 3 and 10 ppt, and finally to a fluid‐like state above 10 ppt. Our research highlights the important role of salt in controlling the rheological properties and erosion threshold of fresh, non‐consolidated deposits of sand‐clay mixtures, with implications for predicting coastal landscape evolution and designing erosion‐control strategies. 
    more » « less
  2. The erosion and transport of cohesive sediment are more difficult to study than non-cohesive sediment, largely because these processes vary with the salt in the water. Clay minerals are the major components that contribute to the cohesiveness of cohesive sediment because they have significantly larger surface charges and surface area-to-volume ratio than non-cohesive sediment. The electrochemically active clay surfaces can adsorb ions on their surfaces, form an electrical double layer, and cause clay particles to aggregate or form a gel. In this chapter, we first discuss the properties of clay minerals, including the structure of clay primary particles, their surface charge and area, and their interaction with ions in water. The surface charges and surface areas of clay are several orders of magnitude larger than non-cohesive sand, thus predisposing it to interactions with salt in aqueous environments. Second, we summarize studies that reveal the role of salts, specifically salinity and sodium absorption ratio (SAR), on sediment aggregation, stability, and settling speed. An increase in salinity from 0.15 to 1.5 ppt has been shown to increase the erosion threshold of smectite clay by more than 10 times. These findings underscore the crucial role of salt in shaping cohesive sediment transport. 
    more » « less
  3. Abstract The streaming instability (SI) is a leading mechanism for concentrating solid particles into regions dense enough to form planetesimals. Its efficiency in clumping particles depends primarily on the dimensionless stopping time (τs, a proxy for particle size) and dust-to-gas surface density ratio (Z). Previous simulations identified a criticalZ(Zcrit) above which strong clumping occurs, where particle densities exceed the Hill density (thus satisfying a condition for gravitational collapse), over a wide range ofτs. These works found that, forτs≤ 0.01,Zcritwas above the interstellar medium value (∼0.01). In this work, we reexamine the clumping threshold using 2D axisymmetric, stratified simulations at high resolution and with relatively large (compared to many previous simulations) domain sizes. Our main results are as follows: First, whenτs = 0.01, strong clumping occurs even atZ ≲ 0.01, lower thanZcritfound in all previous studies. Consequently, we revise a previously published fit to theZcritcurve to account for this updatedZcrit. Second, higher resolution results in a thicker dust layer, which may result from other instabilities manifesting, such as the vertically shearing SI. Third, despite this thicker layer, higher resolution can lead to strong clumping even with a lower midplane dust-to-gas density ratios (which results from the thicker particle layer) so long asZ ≳ Zcrit. Our results demonstrate the efficiency of the SI in clumping small particles atZ ∼ 0.01, which is a significant refinement of the conditions for planetesimal formation by the SI. 
    more » « less
  4. Abstract Idealized models are analyzed to quantify how large‐scale river plumes interact with coastal corners with and without wind‐driven currents. The configuration has a corner formed by two perpendicular shelves (with constant slope) that are joined with a coastal radius of curvature (rc). The buoyant plume originates from an upstream point source. Thercand wind forcing are varied among runs. Steep‐ and gentle‐slope runs are compared for some situations. Without winds, plumes separate from corners withrcsmaller than two inertial radii (ri); this threshold is twice therc < ritheoretical separation criterion. After separation, no‐wind plumes form an anticyclonic bulge, and reattach farther downstream. Offshore excursion increases asrcdecreases. A downwelling‐favorable wind component along the upstream coast (τsx) favors separation by increasing total plume speed. An upwelling‐favorable wind component along the downstream coast (τsy) also increases offshore excursion. Winds blowing obliquely offshore with both these wind components advect the plume farther offshore. Wind‐driven currents that steer plumes in this situation include a downshelf jet originating on the upstream shelf and continuing around the coastal corner and beyond, offshore and upshelf surface transport downstream of the corner, and surface Ekman transport on the outer shelf. Multiple linear regressions quantify plume position sensitivity torcsx, andτsy; results are discussed in a dynamical context. Globally, many river plumes interact with coastal corners under various wind conditions. 
    more » « less
  5. Predicting the susceptibility of soil to wind erosion is difficult because it is a multivariate function of grain size, soil moisture, compaction, and biological growth. Erosive agents like plowing and grazing also differ in mechanism from entrainment by fluid shear; it is unclear if and how erosion thresholds for each process are related. Here we demonstrate the potential to rapidly assemble empirical maps of erodibility while also examining what controls it, using a novel “plowing” test of surface‐soil shear resistance (τr) performed by a semi‐autonomous robot. Field work at White Sands National Monument, New Mexico, United States, examined gradients in erodibility at two scales: (i) soil moisture changes from dry dune crest to wet interdune (tens of meters) and (ii) downwind‐increasing dune stabilization associated with growth of plants and salt and biological crusts (kilometers). We found that soil moisture changes of a few percent corresponded to a doubling ofτr, a result confirmed by laboratory experiments, and that soil crusts conferred stability that was comparable to moisture effects. We then compared different mechanisms of mechanical perturbation in a controlled laboratory setting. A new “kick‐out” test determines peak shear resistance of the surface soil as a proxy for yield strength. Kick‐out resistance exhibited a relation with soil moisture that was distinct from the plowing test and that was correlated with the independently measured threshold‐fluid stress for wind erosion. Results show that our new method maps soil erodibility in arid environments and provides an understanding of environmental controls on variations in soil erodibility. 
    more » « less