Steep, boulder bed streams often contain sediment patches, which are areas of the bed with relatively well‐defined boundaries that are occupied by distinct grain size distributions (GSD). In sediment mixtures, the underlying GSD affects the critical Shields stress for a given grain size, which is commonly predicted using hiding functions. Hiding functions may vary with reach‐wide bed GSD, but the effect of local GSD on relative sediment mobility between sediment patches is poorly understood. We explore the effects of patch‐scale GSD on sediment mobility using tracer particles combined with local shear stresses to develop hiding functions for different patch classes within a steep stream. Hiding functions for all tested patch classes were similar, which indicates that the same hiding function can be used for different patches. However, the critical Shields stress for a given grain size generally decreased with lower patch median grain size (
Estimates of the onset of sediment motion are integral for flood protection and river management but are often highly inaccurate. The critical shear stress (
- Award ID(s):
- 1734752
- NSF-PAR ID:
- 10449141
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 123
- Issue:
- 12
- ISSN:
- 2169-9003
- Page Range / eLocation ID:
- p. 3308-3322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract D 50) suggesting that patches control the relative mobility of each size through both the underlying GSD and local shear stresses. The effects of the underlying GSD partly depend on grain protrusion, which we measured for all grain sizes present on each patch class. Protrusion was generally greater for larger grains regardless of patch class, but for a given grain size, protrusion was increased with smaller patchD 50. For a given grain size, higher protrusion results in greater applied fluid forces and reduced resisting forces to partly explain our lower critical Shields stresses in finer patches. Patches therefore can importantly modulate relative sediment mobility through bed structure and may need to be included in reach‐scale sediment transport and channel stability estimates. -
Abstract To explore the causes of history‐dependent sediment transport in rivers, we use a 19‐year record of coarse sediment transport from a steep channel in Switzerland. We observe a strong dependence of the threshold for sediment motion (
τ c ) on the magnitude of previous flows for prior shear stresses ranging from 104 to 340 Pa, resulting in seasonally increasingτ c for 10 of 19 years. This stabilization occurs with and without measureable bedload transport, suggesting that small‐scale riverbed rearrangement increasesτ c . Following large transport events (>340 Pa), this history dependence is disrupted. Bedload tracers suggest that significant reorganization of the bed erases memory of previous flows. We suggest that the magnitude of past flows controls the organization of the bed, which then modifiesτ c , paralleling the evolution of granular media under shear. Our results support the use of a state function to better predict variability in bedload sediment transport rates. -
Abstract Flow resistance in mountain streams is important for assessing flooding hazard and quantifying sediment transport and bedrock incision in upland landscapes. In such settings, flow resistance is sensitive to grain‐scale roughness, which has traditionally been characterized by particle size distributions derived from laborious point counts of streambed sediment. Developing a general framework for rapid quantification of resistance in mountain streams is still a challenge. Here we present a semi‐automated workflow that combines millimeter‐ to centimeter‐scale structure‐from‐motion (SfM) photogrammetry surveys of bed topography and computational fluid dynamics (CFD) simulations to better evaluate surface roughness and rapidly quantify flow resistance in mountain streams. The workflow was applied to three field sites of gravel, cobble, and boulder‐bedded channels with a wide range of grain size, sorting, and shape. Large‐eddy simulations with body‐fitted meshes generated from SfM photogrammetry‐derived surfaces were performed to quantify flow resistance. The analysis of bed microtopography using a second‐order structure function identified three scaling regimes that corresponded to important roughness length scales and surface complexity contributing to flow resistance. The standard deviation
σ z of detrended streambed elevation normalized by water depth, as a proxy for the vertical roughness length scale, emerges as the primary control on flow resistance and is furthermore tied to the characteristic length scale of rough surface‐generated vortices. Horizontal length scales and surface complexity are secondary controls on flow resistance. A new resistance predictor linking water depth and vertical roughness scale, i.e.H /σ z , is proposed based on the comparison betweenσ z and the characteristic length scale of vortex shedding. In addition, representing streambeds using digital elevation models (DEM) is appropriate for well‐sorted streambeds, but not for poorly sorted ones under shallow and medium flow depth conditions due to the missing local overhanging features captured by fully 3D meshes which modulate local pressure gradient and thus bulk flow separation and pressure distribution. An appraisal of the mesh resolution effect on flow resistance shows that the SfM photogrammetry data resolution and the optimal CFD mesh size should be about 1/7 to 1/14 of the standard deviation of bed elevation. © 2019 John Wiley & Sons, Ltd. -
Abstract The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy,
k t , in vegetated channels from channel average velocityU and vegetation volume fractionϕ was validated for mobile sediment beds. Second, using data from several studies, the predictedk t was shown to be a good predictor of bed load transport rate,Q s , allowingQ s to be predicted fromU andϕ for vegetated channels. The control ofQ s byk t was explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated withk t . Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ =0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasingϕ , again suggesting that vegetation facilitated the formation of sheet flow. -
Abstract We present estimates of line-of-sight distortion fields derived from the 95 and 150 GHz data taken by BICEP2, BICEP3, and the Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum
. We constrain polarization rotation, expressed as the coupling constant of a Chern–Simons electromagnetic termg a γ ≤ 2.6 × 10−2/H I , whereH I is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 MpcB 1Mpc≤ 6.6 nG at 95 GHz. We constrain the rms of optical depth fluctuations in a simple “crinkly surface” model of patchy reionization, findingA τ < 0.19 (2σ ) for the coherence scale ofL c = 100. We show that all of the distortion fields of the 95 and 150 GHz polarization maps are consistent with simulations including lensed ΛCDM, dust, and noise, with no evidence for instrumental systematics. In some cases, theEB andTB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spuriousB -modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage.