5
- Award ID(s):
- 2003914
- PAR ID:
- 10499820
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 36
- Issue:
- 27
- ISSN:
- 0953-8984
- Format(s):
- Medium: X Size: Article No. 273001
- Size(s):
- Article No. 273001
- Sponsoring Org:
- National Science Foundation
More Like this
-
Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5 d -electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO 3 . We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO 3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO 3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO 3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5 d transition-metal oxide thin films can be an ideal building block for low-power spintronics.more » « less
-
Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.
-
null (Ed.)In this review, an attempt has been made to compare the electronic structures of various 5d iridates (iridium oxides), with an effort to note the common features and differences. Both experimental studies, especially angle-resolved photoemission spectroscopy (ARPES) results, and first-principles band structure calculations have been discussed. This brings to focus the fact that the electronic structures and magnetic properties of the high- Z 5d transition iridates depend on the intricate interplay of strong electron correlation, strong (relativistic) spin–orbit coupling, lattice distortion, and the dimensionality of the system. For example, in the thin film limit, SrIrO 3 exhibits a metal–insulator transition that corresponds to the dimensionality crossover, with the band structure resembling that of bulk Sr 2 IrO 4 .more » « less
-
Abstract Robustness to disorder is the defining property of any topological state. The ultimate disorder limits to topological protection are still unknown, although a number of theories predict that even in the amorphous state a quantized conductance might yet reemerge. Here we report that in strongly disordered thin films of the topological material Sb2Te3
disorder-induced spin correlations dominate transport of charge—they engender a spin memory phenomenon, generated by the nonequilibrium charge currents controlled by localized spins. We directly detect a glassy yet robust disorder-induced magnetic signal in filmsfree of extrinsic magnetic dopants , which becomes null in a lower-disorder crystalline state. This is where large isotropic negative magnetoresistance (MR)—a hallmark of spin memory—crosses over to positive MR, first with only one e2/h quantum conduction channel, in a weakly antilocalized diffusive transport regime with a 2D scaling characteristic of the topological state. A fresh perspective revealed by our findings is that spin memory effect sets a disorder threshold to the protected topological state. It also points to new possibilities of tuning spin-dependent charge transport by disorder engineering of topological materials. -
Abstract Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr3SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations, a deposition approach is designed and implemented to achieve the adsorption‐controlled growth of epitaxial Sr3SnO single‐crystal films by molecular‐beam epitaxy (MBE). In situ transport and angle‐resolved photoemission spectroscopy measurements reveal the metallic and electronic structure of the as‐grown samples. Compared with conventional MBE, the used synthesis route results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of Sr3SnO opens opportunities to manipulate topological states by tuning symmetries via strain engineering and heterostructuring.