skip to main content

Search for: All records

Award ID contains: 2003914

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the first theoretical and experimental evidence of time-resolved dynamic x-ray magnetic linear dichroism (XMLD) measurements of GHz magnetic precessions driven by ferromagnetic resonance in both metallic and insulating thin films. Our findings show a dynamic XMLD in both ferromagnetic Ni80Fe20and ferrimagnetic Ni0.65Zn0.35Al0.8Fe1.2O4for different measurement geometries and linear polarizations. A detailed analysis of the observed signals reveals the importance of separating different harmonic components in the dynamic signal in order to identify the XMLD response without the influence of competing contributions. In particular, RF magnetic resonance elicits a large dynamic XMLD response at the fundamental frequency under experimental geometries with oblique x-ray polarization. The geometric range and experimental sensitivity can be improved by isolating the 2ωFourier component of the dynamic response. These results illustrate the potential of dynamic XMLD and represent a milestone accomplishment toward the study of GHz spin dynamics in systems beyond ferromagnetic order.

  2. In ferromagnetic metals, transverse spin currents are thought to be absorbed via dephasing—i.e., destructive interference of spins precessing about the strong exchange field. Yet, due to the ultrashort coherence length of ≈1 nm in typical ferromagnetic thin films, it is difficult to distinguish dephasing in the bulk from spin-flip scattering at the interface. Here, to assess which mechanism dominates, we examine transverse spin-current absorption in ferromagnetic NiCu alloy films with reduced exchange fields. We observe that the coherence length increases with decreasing Curie temperature, as weaker dephasing in the film bulk slows down spin absorption. Moreover, nonmagnetic Cu impurities do not diminish the efficiency of spin-transfer torque from the absorbed spin current. Our findings affirm that the transverse spin current is predominantly absorbed by dephasing inside the nanometer-thick ferromagnetic metals, even with high impurity contents.

    Free, publicly-accessible full text available November 29, 2023
  3. Free, publicly-accessible full text available May 1, 2023