skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Differentiating the bonding states in calcium carbonate polymorphs by low-loss electron-energy-loss spectroscopy
Award ID(s):
1954856
PAR ID:
10499925
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Acta Materialia
Volume:
257
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
119191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of ordinal classification occurs in a large and growing number of areas. Some of the most common source and applications of ordinal data include rating scales, medical classification scales, socio-economic scales, meaningful groupings of continuous data, facial emotional intensity, facial age estimation, etc. The problem of predicting ordinal classes is typically addressed by either performing n-1 binary classification for n ordinal classes or treating ordinal classes as continuous values for regression. However, the first strategy doesn't fully utilize the ordering information of classes and the second strategy imposes a strong continuous assumption to ordinal classes. In this paper, we propose a novel loss function called Ordinal Hyperplane Loss (OHPL) that is particularly designed for data with ordinal classes. The proposal of OHPL is a significant advancement in predicting ordinal class data, since it enables deep learning techniques to be applied to the ordinal classification problem on both structured and unstructured data. By minimizing OHPL, a deep neural network learns to map data to an optimal space where the distance between points and their class centroids are minimized while a nontrivial ordinal relationship among classes are maintained. Experimental results show that deep neural network with OHPL not only outperforms the state-of-the-art alternatives on classification accuracy but also scales well to large ordinal classification problems. 
    more » « less