skip to main content


Title: Cascades and reconnection in interacting vortex filaments
At high Reynolds number, the interaction between two vortex tubes leads to intense velocity gradients, which are at the heart of fluid turbulence. This vorticity amplification comes about through two different instability mechanisms of the initial vortex tubes, assumed anti-parallel and with a mirror plane of symmetry. At moderate Reynolds number, the tubes destabilize via a Crow instability, with the nonlinear development leading to strong flattening of the cores into thin sheets. These sheets then break down into filaments which can repeat the process. At higher Reynolds number, the instability proceeds via the elliptical instability, producing vortex tubes that are perpendicular to the original tube directions. In this work, we demonstrate that these same transition between Crow and Elliptical instability occurs at moderate Reynolds number when we vary the initial angle   between two straight vortex tubes. We demonstrate that when the angle between the two tubes is close to  =2, the interaction between tubes leads to the formation of thin vortex sheets. The subsequent breakdown of these sheets involves a twisting of the paired sheets, followed by the appearance of a localized cloud of small scale vortex structures. At smaller values of the angle   between the two tubes, the breakdown mechanism changes to an elliptic cascade-like mechanism. Whereas the interaction of two vortices depends on the initial condition, the rapid formation of fine-scales vortex structures appears to be a robust feature, possibly universal at very high Reynolds numbers.  more » « less
Award ID(s):
2011754
NSF-PAR ID:
10499981
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Fluids
Volume:
6
Issue:
7
ISSN:
2469-990X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $\alpha =3^{\circ }$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities. 
    more » « less
  2. We investigate the effect of inertial particles dispersed in a circular patch of finite radius on the stability of a two-dimensional Rankine vortex in semi-dilute dusty flows. Unlike the particle-free case where no unstable modes exist, we show that the feedback force from the particles triggers a novel instability. The mechanisms driving the instability are characterized using linear stability analysis for weakly inertial particles and further validated against Eulerian–Lagrangian simulations. We show that the particle-laden vortex is always unstable if the mass loading $M>0$ . Surprisingly, even non-inertial particles destabilize the vortex by a mechanism analogous to the centrifugal Rayleigh–Taylor instability in radially stratified vortex with density jump. We identify a critical mass loading above which an eigenmode $m$ becomes unstable. This critical mass loading drops to zero as $m$ increases. When particles are inertial, modes that fall below the critical mass loading become unstable, whereas modes above it remain unstable but with lower growth rates compared with the non-inertial case. Comparison with Eulerian–Lagrangian simulations shows that growth rates computed from simulations match well the theoretical predictions. Past the linear stage, we observe the emergence of high-wavenumber modes that turn into spiralling arms of concentrated particles emanating out of the core, while regions of particle-free flow are sucked inward. The vorticity field displays a similar pattern which leads to the breakdown of the initial Rankine structure. This novel instability for a dusty vortex highlights how the feedback force from the disperse phase can induce the breakdown of an otherwise resilient vortical structure. 
    more » « less
  3. Abstract High frequency (30 Hz) two-dimensional particle image velocimetry data recorded during a field experiment exploring fire spread from point ignition in hand-spread pine needles under calm ambient wind conditions are analysed in this study. In the initial stages, as the flame spreads approximately radially away from the ignition point in the absence of a preferred wind-forcing direction, it entrains cooler ambient air into the warmer fire core, thereby experiencing a dynamic pressure resistance. The fire-front, comprising a flame that is tilted inward, is surrounded by a region of downdraft. Coherent structures describe the initial shape of the fire-front and its response to local wind shifts while also revealing possible fire-spread mechanisms. Vortex tubes originating outside the fire spiral inward and get stretched thinner at the fire-front leading to higher vorticity there. These tubes comprise circulation structures that induce a radially outward velocity close to the fuel bed, which pushes hot gases outward, thereby causing the fire to spread. Moreover, these circulation structures confirm the presence of counter-rotating vortex pairs that are known to be a key mechanism for fire spread. The axis of the vortex tubes changes its orientation alternately towards and away from the surface of the fuel bed, causing the vortex tubes to be kinked. The strong updraft observed at the location of the fire-front could potentially advect and tilt the kinked vortex tube vertically upward leading to fire-whirl formation. As the fire evolves, its perimeter disintegrates in response to flow instabilities to form smaller fire “pockets”. These pockets are confined to certain points in the flow field that remain relatively fixed for a while and resemble the behavior of a chaotic system in the vicinity of an attractor. Increased magnitudes of the turbulent fluxes of horizontal momentum, computed at certain such fixed points along the fire-front, are symptomatic of irregular fire bursts and help contextualize the fire spread. Most importantly, the time-varying transport terms of the turbulent kinetic energy budget equation computed at adjacent fixed points indicate that local fires along the fire-front primarily interact via the horizontal turbulent transport term. 
    more » « less
  4. We study the evolution of a 2D vortex layer at high Reynolds number. Vortex layer flows are characterized by intense vorticity concentrated around a curve. In addition to their intrinsic interest, vortex layers are relevant configurations because they are regularizations of vortex sheets. In this paper, we consider vortex layers whose thickness is proportional to the square-root of the viscosity. We investigate the typical roll-up process, showing that crucial phases in the initial flow evolution are the formation of stagnation points and recirculation regions. Stretching and folding characterizes the following stage of the dynamics, and we relate these events to the growth of the palinstrophy. The formation of an inner vorticity core, with vorticity intensity growing to infinity for larger Reynolds number, is the final phase of the dynamics. We display the inner core's self-similar structure, with the scale factor depending on the Reynolds number. We reveal the presence of complex singularities in the solutions of Navier–Stokes equations; these singularities approach the real axis with increasing Reynolds number. The comparison between these singularities and the Birkhoff–Rott singularity seems to suggest that vortex layers, in the limit $Re\rightarrow \infty$ , behave differently from vortex sheets. 
    more » « less
  5. Abstract

    Kjellstrand et al. (2022),https://10.1029/2021JD036232describes the evolution and dynamics of a strong, large‐scale Kelvin‐Helmholtz instability (KHI) event observed in polar mesospheric clouds (PMCs) on 12 July 2018 by high‐resolution imagers aboard the PMC Turbulence (PMC Turbo) stratospheric long‐duration balloon experiment. The imaging provides evidence of KH billow interactions and instabilities that are strongly influenced by gravity waves at larger scales. Specific features include initially separated regions of KHI, secondary convective and KH instabilities of individual billows, and “tubes” and “knots” that arise where billow cores are mis‐aligned or discontinuous along their axes. This study describes a direct numerical simulation of KH billow interactions in a periodic domain seeded with random initial noise that enables excitation of multiple KH billows exhibiting variable phase structures that capture multiple features of the observed KHI dynamics. Variable KH billow phases along their axes yield initial vortex tubes having diagonal alignments that link adjacent, but mis‐aligned, billow cores. Weak initial vortex tubes and billow cores having nearly orthogonal alignments amplify, interact strongly, and drive intense vortex knots at these sites. These vortex tube and knot (T&K) dynamics excite “twist waves” that unravel the initial vortex tubes, and drive increasingly strong vortex interactions and a cascade of energy and enstrophy to successively smaller scales in the turbulence inertial range. The implications of T&K dynamics are much more rapid and intense breakdown and decay of the KH billows, and significantly enhanced energy dissipation rates, where these interactions occur.

     
    more » « less