We consider a general class of mean field control problems described by stochastic delayed differential equations of McKean-Vlasov type. Two numerical algorithms are provided based on deep learning techniques, one is to directly parameterizing the optimal control using neural networks, the other is based on numerically solving the McKean-Vlasov forward anticipated backward stochastic differential equation (MV-FABSDE) system. In addition, we establish the necessary and sufficient stochastic maximum principle of this class of mean field control problems with delay based on the differential calculus on function of measures, and the exis- tence and uniqueness results are proved for the associated MV-FABSDE system under suitable conditions.
more »
« less
Spike Variations for Stochastic Volterra Integral Equations
The spike variation technique plays a crucial role in deriving Pontryagin's type maximum principle of optimal controls for ordinary differential equations (ODEs), partial differential equations (PDEs), stochastic differential equations (SDEs), and (deterministic forward) Volterra integral equations (FVIEs), when the control domains are not assumed to be convex. It is natural to expect that such a technique could be extended to the case of (forward) stochastic Volterra integral equations (FSVIEs). However, by mimicking the case of SDEs, one encounters an essential difficulty of handling an involved quadratic term. To overcome this difficulty, we introduce an auxiliary process for which one can use It\^o's formula, and develop new technologies inspired by stochastic linear-quadratic optimal control problems. Then the suitable representation of the above-mentioned quadratic form is obtained, and the second-order adjoint equations are derived. Consequently, the maximum principle of Pontryagin type is established. Some relevant extensions are investigated as well.
more »
« less
- Award ID(s):
- 2305475
- PAR ID:
- 10499994
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- SIAM Journal on Control and Optimization
- Volume:
- 61
- Issue:
- 6
- ISSN:
- 0363-0129
- Page Range / eLocation ID:
- 3608 to 3634
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Linear quadratic stochastic optimal control problems with operator coefficients: open-loop solutionsAn optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic (LQ, for short) optimal control problems for mean-field stochastic differential equations. Open-loop solvability of the problem is characterized as the solvability of a system of linear coupled forward-backward stochastic differential equations (FBSDE, for short) with operator coefficients, together with a convexity condition for the cost functional. Under proper conditions, the well-posedness of such an FBSDE, which leads to the existence of an open-loop optimal control, is established. Finally, as applications of our main results, a general mean-field LQ control problem and a concrete mean-variance portfolio selection problem in the open-loop case are solved.more » « less
-
A linear-quadratic optimal control problem for a forward stochastic Volterra integral equation (FSVIE) is considered. Under the usual convexity conditions, open-loop optimal control exists, which can be characterized by the optimality system, a coupled system of an FSVIE and a type-II backward SVIE (BSVIE). To obtain a causal state feedback representation for the open-loop optimal control, a path-dependent Riccati equation for an operator-valued function is introduced, via which the optimality system can be decoupled. In the process of decoupling, a type-III BSVIE is introduced whose adapted solution can be used to represent the adapted M-solution of the corresponding type-II BSVIE. Under certain conditions, it is proved that the path-dependent Riccati equation admits a unique solution, which means that the decoupling field for the optimality system is found. Therefore, a causal state feedback representation of the open-loop optimal control is constructed. An additional interesting finding is that when the control only appears in the diffusion term, not in the drift term of the state system, the causal state feedback reduces to a Markovian state feedback.more » « less
-
Duality between estimation and optimal control is a problem of rich historical significance. The first duality principle appears in the seminal paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic (LQ) optimal control problem. Duality offers a constructive proof technique to derive the Kalman filter equation from the optimal control solution. This paper generalizes the classical duality result of Kalman-Bucy to the nonlinear filter: The state evolves as a continuous-time Markov process and the observation is a nonlinear function of state corrupted by an additive Gaussian noise. A dual process is introduced as a backward stochastic differential equation (BSDE). The process is used to transform the problem of minimum variance estimation into an optimal control problem. Its solution is obtained from an application of the maximum principle, and subsequently used to derive the equation of the nonlinear filter. The classical duality result of Kalman-Bucy is shown to be a special case.more » « less
-
This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop and closed-loop saddle points are characterized by the solvability of a system of two coupled generalized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic optimal control problems in an infinite horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability are equivalent.more » « less
An official website of the United States government

