skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fractional defect charges in liquid crystals with p -fold rotational symmetry on cones
Conical surfaces, with a δ function of Gaussian curvature at the apex, are perhaps the simplest example of geometric frustration. We study two-dimensional liquid crystals with p-fold rotational symmetry (p-atics) on the surfaces of cones. For free boundary conditions at the base, we find both the ground state(s) and a discrete ladder of metastable states as a function of both the cone angle and the liquid crystal symmetry p. We find that these states are characterized by a set of fractional defect charges at the apex and that the ground states are in general frustrated due to effects of parallel transport along the azimuthal direction of the cone. We check our predictions for the ground-state energies numerically for a set of commensurate cone angles (corresponding to a set of commensurate Gaussian curvatures concentrated at the cone apex), whose surfaces can be polygonized as a perfect triangular or squaremesh, and find excellent agreement with our theoretical predictions.  more » « less
Award ID(s):
2011754
PAR ID:
10500045
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
105
Issue:
5
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the ground-state configurations of two-dimensional liquid crystals with p-fold rotational symmetry (p-atics) on fixed curved surfaces. We focus on the intrinsic geometry and show that isothermal coordinates are particularly convenient as they explicitly encode a geometric contribution to the elastic potential. In the special case of a cone with half-angle β, the apex develops an effective topological charge of −χ, where 2πχ = 2π(1 − sin β) is the deficit angle of the cone, and a topological defect of charge σ behaves as if it had an effective topological charge Qeff = (σ − σ2/2) when interacting with the apex. The effective charge of the apex leads to defect absorption and emission at the cone apex as the deficit angle of the cone is varied. For total topological defect charge 1, e.g., imposed by tangential boundary conditions at the edge, we find that for a disk the ground-state configuration consists of p defects each of charge +1/p lying equally spaced on a concentric ring of radius d = ( p−1 3p−1 ) 1 2p R, where R is the radius of the disk. In the case of a cone with tangential boundary conditions at the base, we find three types of ground-state configurations as a function of cone angle: (i) for sharp cones, all of the +1/p defects are absorbed by the apex; (ii) at intermediate cone angles, some of the +1/p defects are absorbed by the apex and the rest lie equally spaced along a concentric ring on the flank; and (iii) for nearly flat cones, all of the +1/p defects lie equally spaced along a concentric ring on the flank. Here the defect positions and the absorption transitions depend intricately on p and the deficit angle, which we analytically compute. We check these results with numerical simulations for a set of commensurate cone angles and find excellent agreement. 
    more » « less
  2. The correlations between event-by-event fluctuations of symmetry planes are measured in Pb-Pb collisions at a center-of-mass energy per nucleon pair s N N = 5.02 TeV recorded by the ALICE detector at the Large Hadron Collider. This analysis is conducted using the Gaussian estimator technique, which is insensitive to biases from correlations between different flow amplitudes. The study presents, for the first time, the centrality dependence of correlations involving up to five different symmetry planes. The correlation strength varies depending on the harmonic order of the symmetry plane and the collision centrality. Comparisons with measurements from lower energies indicate no significant differences within uncertainties. Additionally, the results are compared with hydrodynamic model calculations. Although the model predictions provide a qualitative explanation of the experimental results, they overestimate the data for some observables. This is particularly true for correlators that are sensitive to the nonlinear response of the medium to initial-state anisotropies in the collision system. As these new correlators provide unique information—independent of flow amplitudes—their usage in future model developments can further constrain the properties of the strongly interacting matter created in ultrarelativistic heavy-ion collisions. 
    more » « less
  3. We study the phonon modes of interacting particles on the surface of a truncated cone resting on a plane subject to gravity, inspired by recent colloidal experiments. We derive the ground-state configuration of the particles under gravitational pressure in the small-cone-angle limit and find an inhomogeneous triangular lattice with spatially varying density but robust local order. The inhomogeneity has striking effects on the normal modes such that an important feature of the cone geometry, namely its apex angle, can be extracted from the lattice excitations. The shape of the cone leads to energy crossings at long wavelengths and frequency-dependent quasilocalization at short wavelengths.We analytically derive the localization domain boundaries of the phonons in the limit of small cone angle and check our results with numerical results for eigenfunctions. 
    more » « less
  4. The boundaries of the Chart of Nuclides contain exotic isotopes that possess extreme proton-toneutron asymmetries. Here we report on two of the most exotic proton-rich isotopes where at least one half of their constitute nucleons are unbound. While the ground state of 8C is a resonance, its first excited state lies in the diffuse borderland between nuclear states and fleeting scattering features. Evidence for 9N, with seven protons and two neutrons, is also presented. This extremely proton-rich system represents the first-known example of a ground-state five-proton emitter. The energies of these states are consistent with theoretical predictions of an open-quantum-system approach. 
    more » « less
  5. none (Ed.)
    The recent prediction that honeycomb lattices of Co2+ (3d7) ions could host dominant Kitaev interactions provides an exciting direction for exploration of new routes to stabilizing Kitaev’s quantum spin liquid in real materials. Na3Co2SbO6 has been singled out as a potential material candidate provided that spin and orbital moments couple into a Jeff = 1/2 ground state, and that the relative strength of trigonal crystal field and spin-orbit coupling acting on Co ions can be tailored. Using x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) experiments, alongside configuration interaction calculations, we confirm the counterintuitive positive sign of the trigonal crystal field acting on Co2+ ions and test the validity of the Jeff = 1/2 description of the electronic ground state. The results lend experimental support to recent theoretical predictions that a compression (elongation) of CoO6 octahedra along (perpendicular to) the trigonal axis would drive this cobaltate toward the Kitaev limit, assuming the Jeff = 1/2 character of the electronic ground state is preserved. 
    more » « less