The increased demand for agricultural productivity to support the growing population has resulted in the expanded use of pesticides. However, modern pesticide applications contaminate air, water, soil, and unintentional target species. It is necessary to develop effective and sustainable methods to detect different pesticides within our environment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention for its ability to detect and quantify environmental contaminants, as it is a rapid and sensitive technique that requires minimal sample preparation. The present study demonstrates the development of a biowaste-derived nanocellulose-based thin-film that, when integrated with gold nanoparticles, produces a sustainable and reproducible SERS nanosubstrate. In this study, three pesticides (carbaryl, ferbam, and thiabendazole) were sensitively and selectively detected by the combined use of this novel nanocellulose-based SERS nanosubstrate and a portable Raman instrument. The limits of detection were determined to be 1.34, 1.01, and 1.41 mg/L for carbaryl, ferbam, and thiabendazole, respectively, all of which are well below the agricultural application concentrations recommended. SERS signals were collected for both prepared ferbam spray solution and collected sprayed droplets, and it was found that there is no major difference in the signals, indicating that this detection method is reliable to detect pesticide droplets. A commercial pesticide was detectable by the biowaste-derived SERS nanosubstrate. This study is among the first to utilize biowaste-derived nanocellulose to create SERS nanosubstrate for pesticide detection in spray droplets. We demonstrate the high potential of biowaste-derived nanocellulose in combination with the portable Raman technique for agricultural pesticide spray detection.
more »
« less
Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS
AbstractIn recent years, concerns have been raised regarding the contamination of grapes with pesticide residues. As consumer demand for safer food products grows, regular monitoring of pesticide residues in food has become essential. This study sought to develop a rapid and sensitive technique for detecting two specific pesticides (phosmet and paraquat) present on the grape surface using the surface‐enhanced Raman spectroscopy (SERS) method. Gold nanostars (AuNS) particles were synthesized, featuring spiky tips that act as hot spots for localized surface plasmon resonance, thereby enhancing Raman signals. Additionally, the roughened surface of AuNS increases the surface area, resulting in improved interactions between the substrate and analyte molecules. Prominent Raman peaks of mixed contaminants were acquired and used to characterize and quantify the pesticides. It was observed that the SERS intensity of the Raman peaks changed in proportion to the concentration ratio of phosmet and paraquat. Moreover, AuNS exhibited superior SERS enhancement compared to gold nanoparticles. The results demonstrate that the lowest detectable concentration for both pesticides on grape surfaces is 0.5 mg/kg. These findings suggest that SERS coupled with AuNS constitutes a practical and promising approach for detecting and quantifying trace contaminants in food. Practical ApplicationThis research established a novel surface‐enhanced Raman spectroscopy (SERS) method coupled with a simplified extraction protocol and gold nanostar substrates to detect trace levels of pesticides in fresh produce. The detection limits meet the maximum residue limits set by the EPA. This substrate has great potential for rapid measurements of chemical contaminants in foods.
more »
« less
- Award ID(s):
- 2103025
- PAR ID:
- 10500049
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Food Science
- Volume:
- 89
- Issue:
- 4
- ISSN:
- 0022-1147
- Format(s):
- Medium: X Size: p. 2512-2521
- Size(s):
- p. 2512-2521
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface-enhanced Raman spectroscopy (SERS) has great potential as an analytical technique for environmental analyses. In this study, we fabricated highly porous gold (Au) supraparticles ( i.e. , ∼100 μm diameter agglomerates of primary nano-sized particles) and evaluated their applicability as SERS substrates for the sensitive detection of environmental contaminants. Facile supraparticle fabrication was achieved by evaporating a droplet containing an Au and polystyrene (PS) nanoparticle mixture on a superamphiphobic nanofilament substrate. Porous Au supraparticles were obtained through the removal of the PS phase by calcination at 500 °C. The porosity of the Au supraparticles was readily adjusted by varying the volumetric ratios of Au and PS nanoparticles. Six environmental contaminants (malachite green isothiocyanate, rhodamine B, benzenethiol, atrazine, adenine, and gene segment) were successfully adsorbed to the porous Au supraparticles, and their distinct SERS spectra were obtained. The observed linear dependence of the characteristic Raman peak intensity for each environmental contaminant on its aqueous concentration reveals the quantitative SERS detection capability by porous Au supraparticles. The limit of detection (LOD) for the six environmental contaminants ranged from ∼10 nM to ∼10 μM, which depends on analyte affinity to the porous Au supraparticles and analyte intrinsic Raman cross-sections. The porous Au supraparticles enabled multiplex SERS detection and maintained comparable SERS detection sensitivity in wastewater influent. Overall, we envision that the Au supraparticles can potentially serve as practical and sensitive SERS devices for environmental analysis applications.more » « less
-
Rapid and cost-effective detection of antibiotics in wastewater and through wastewater treatment processes is an important first step in developing effective strategies for their removal. Surface-enhanced Raman scattering (SERS) has the potential for label-free, real-time sensing of antibiotic contamination in the environment. This study reports the testing of two gold nanostructures as SERS substrates for the label-free detection of quinoline, a small-molecular-weight antibiotic that is commonly found in wastewater. The results showed that the self-assembled SERS substrate was able to quantify quinoline spiked in wastewater with a lower limit of detection (LoD) of 5.01 ppb. The SERStrate (commercially available SERS substrate with gold nanopillars) had a similar sensitivity for quinoline quantification in pure water (LoD of 1.15 ppb) but did not perform well for quinoline quantification in wastewater (LoD of 97.5 ppm) due to interferences from non-target molecules in the wastewater. Models constructed based on machine learning algorithms could improve the separation and identification of quinoline Raman spectra from those of interference molecules to some degree, but the selectivity of SERS intensification was more critical to achieve the identification and quantification of the target analyte. The results of this study are a proof-of-concept for SERS applications in label-free sensing of environmental contaminants. Further research is warranted to transform the concept into a practical technology for environmental monitoring.more » « less
-
Abstract The enormous increase of Raman signal in the vicinity of metal nanoparticles allows surface‐enhanced Raman spectroscopy (SERS) to be employed for label‐free detection of substances at extremely low concentrations. However, the ultimate potential of label‐free SERS to identify pharmaceutical compounds at low concentrations, especially in relation to biofluid sensing, is far from being fully realized. Opioids are a particular challenge for rapid clinical identification because their molecular structural similarities prevent their differentiation with immunolabeling approaches. In this paper, a new method called quantitative label‐free SERS (QLF‐SERS) which involves the formation of halide‐conjugated gold nanoclusters trapping the analyte of interest near the SERS hot spots is reported, and it is demonstrated that it yields a 105fold improvement in the detection limit over previously reported results for the entire class of clinically relevant opioids and their metabolites. Measurements of opioid concentrations in multicomponent mixtures are also demonstrated. QLF‐SERS has comparable detection limits as currently existing laboratory urine drug testing techniques but is significantly faster and inexpensive and, therefore, can be easily adapted as part of a rapid clinical laboratory routine.more » « less
-
Abstract The performance of surface‐enhanced Raman spectroscopy (SERS) is determined by the interaction between highly diluted analytes and boosted localized electromagnetic fields in nanovolumes. Although superhydrophobic surfaces are developed for analyte enrichment, i.e., to concentrate and transfer analytes toward a specific position, it is still challenging to realize reproducible, uniform, and sensitive superhydrophobic SERS substrates over large scales, representing a major barrier for practical sensing applications. To overcome this challenge, a superhydrophobic SERS chip that combines 3D‐assembled gold nanoparticles on nanoporous substrates is proposed, for a strong localized field, with superhydrophobic surface treatment for analyte enrichment. Intriguingly, by concentrating droplets in the volume of 40 µL, the sensitivity of 1 nmis demonstrated using 1,2‐bis(4‐pyridyl)‐ethylene molecules. In addition, this unique chip demonstrates a relative standard deviation (RSD) of 2.2% in chip‐to‐chip reproducibility for detection of fentanyl at 1 µg mL–1concentration, revealing its potential for quantitative sensing of chemicals and drugs. Furthermore, the trace analysis of fentanyl and fentanyl‐heroin mixture in human saliva is realized after a simple pretreatment process. This superhydrophobic chip paves the way toward on‐site and real‐time drug sensing to tackle many societal issues like drug abuse and the opioid crisis.more » « less
An official website of the United States government
