This content will become publicly available on November 15, 2023
- Publication Date:
- NSF-PAR ID:
- 10386284
- Journal Name:
- RSC Advances
- Volume:
- 12
- Issue:
- 51
- Page Range or eLocation-ID:
- 32803 to 32812
- ISSN:
- 2046-2069
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bacterial cellulose nanocrystals (BCNCs) are biocompatible cellulose nanomaterials that can host guest nanoparticles to form hybrid nanocomposites with a wide range of applications. Herein, we report the synthesis of a hybrid nanocomposite that consists of plasmonic gold nanoparticles (AuNPs) and superparamagnetic iron oxide (Fe 3 O 4 ) nanoparticles supported on BCNCs. As a proof of concept, the hybrid nanocomposites were employed to isolate and detect malachite green isothiocyanate (MGITC) via magnetic separation and surface-enhanced Raman scattering (SERS). Different initial gold precursor (Au 3+ ) concentrations altered the size and morphology of the AuNPs formed on the nanocomposites. The use of 5 and 10 mM Au 3+ led to a heterogenous mix of spherical and nanoplate AuNPs with increased SERS enhancements, as compared to the more uniform AuNPs formed using 1 mM Au 3+ . Rapid and sensitive detection of MGITC at concentrations as low as 10 −10 M was achieved. The SERS intensity of the normalized Raman peak at 1175 cm −1 exhibited a log-linear relationship for MGITC concentrations between 2 × 10 −10 and 2 × 10 −5 M for Au@Fe 3 O 4 @BCNCs. These results suggest the potential of these hybrid nanocomposites for application in amore »
-
Abstract Nanostructured molecular semiconductor films are promising Surface-Enhanced Raman Spectroscopy (SERS) platforms for both fundamental and technological research. Here, we report that a nanostructured film of the small molecule
DFP -4T , consisting of a fully π-conjugated diperfluorophenyl-substituted quaterthiophene structure, demonstrates a very large Raman enhancement factor (>105) and a low limit of detection (10−9 M) for the methylene blue probe molecule. This data is comparable to those reported for the best inorganic semiconductor- and even intrinsic plasmonic metal-based SERS platforms. Photoluminescence spectroscopy and computational analysis suggest that both charge-transfer energy and effective molecular interactions, leading to a small but non-zero oscillator strength in the charge-transfer state between the organic semiconductor film and the analyte molecule, are required to achieve large SERS enhancement factors and high molecular sensitivities in these systems. Our results provide not only a considerable experimental advancement in organic SERS figure-of-merits but also a guidance for the molecular design of more sensitive SERS systems. -
Abstract Surface‐enhanced Raman scattering (SERS) sensing in microfluidic devices, namely optofluidic‐SERS, suffers an intrinsic tradeoff between mass transport and hot spot density, both of which are required for ultrasensitive detection. To overcome this compromise, photonic crystal‐enhanced plasmonic mesocapsules are synthesized, utilizing diatom biosilica decorated with in‐situ growth silver nanoparticles (Ag NPs). In the optofluidic‐SERS testing of this study, 100× higher enhancement factors and more than 1,000× better detection limit are achieved compared with traditional colloidal Ag NPs, the improvement of which is attributed to unique properties of the mesocapsules. First, the porous diatom biosilica frustules serve as carrier capsules for high density Ag NPs that form high density plasmonic hot‐spots. Second, the submicron‐pores embedded in the frustule walls not only create a large surface‐to‐volume ratio allowing for effective analyte capture, but also enhance the local optical field through the photonic crystal effect. Last, the mesocapsules provide effective mixing with analytes as they are flowing inside the microfluidic channel. The reported mesocapsules achieve single molecule detection of Rhodamine 6G in microfluidic devices and are further utilized to detect 1 × 10−9
m of benzene and chlorobenzene compounds in tap water with near real‐time response, which successfully overcomes the constraint of traditional optofluidic sensing. -
Molecularly imprinted plasmonic nanosensors are robust devices capable of selective target interaction, and in some cases reaction catalysis. Recent advances in control of nanoscale structure have opened the door for development of a wide range of chemosensors for environmental monitoring. The soaring rate of environmental pollution through human activities and its negative impact on the ecosystem demands an urgent interest in developing rapid and efficient techniques that can easily be deployed for in-field assessment and environmental monitoring purposes. Organophosphate pesticides (OPPs) play a significant role for agricultural use; however, they also present environmental threats to human health due to their chemical toxicity. Plasmonic sensors are thus vital analytical detection tools that have been explored for many environmental applications and OPP detection due to their excellent properties such as high sensitivity, selectivity, and rapid recognition capability. Molecularly imprinted polymers (MIPs) have also significantly been recognized as a highly efficient, low-cost, and sensitive synthetic sensing technique that has been adopted for environmental monitoring of a wide array of environmental contaminants, specifically for very small molecule detection. In this review, the general concept of MIPs and their synthesis, a summary of OPPs and environmental pollution, plasmonic sensing with MIPs, surface plasmon resonance (SPR),more »
-
Abstract Metal film over nanosphere (FON) substrates are a mainstay of surface‐enhanced Raman scattering (SERS) measurements because they are inexpensive to fabricate, have predictable enhancement factors, and are relatively robust. This work includes a systematic investigation of how the three major FON fabrication parameters—nanosphere size, deposited metal thickness, and metal choice—impact the resulting localized surface plasmon resonance (LSPR). With these three parameters, it is quite simple to fabricate FONs with an optimal LSPR for SERS experiments with various excitation wavelengths. Some SERS experiments require that the substrates be incubated in organic solvents that have the potential to damage the substrate; as such, this work also explores how solvent incubation impacts the physical and optical properties of the FON substrate. Although no significant increase in physical damage is obvious, the LSPR does shift significantly. Finally, these optimized FONs were employed for the sensing of an important allergen, soybean agglutinin. The FONs were modified with a glycopolymer that has affinity for soybean agglutinin and clear Raman bands demonstrate detection of 10 μg/ml soybean agglutinin. Overall, this work serves the dual purpose of both sharing critical details about FON design and demonstrating detection of an important lectin analyte.