skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiphase Gas in Elliptical Galaxies: The Role of Type Ia Supernovae
Abstract Massive elliptical galaxies harbor large amounts of hot gas (T≳ 106K) in their interstellar medium (ISM) but are typically quiescent in star formation. The jets of active galactic nuclei (AGNs) and Type Ia supernovae (SNe Ia) inject energy into the ISM, which offsets its radiative losses and keeps it hot. SNe Ia deposit their energy locally within the galaxy compared to the larger few ×10 kiloparsec-scale AGN jets. In this study, we perform high-resolution (5123) hydrodynamic simulations of a local (1 kpc3) density-stratified patch of the ISM of massive galaxies. We include radiative cooling and shell-averaged volume heating, as well as randomly exploding SN Ia. We study the effect of different fractions of supernova (SN) heating (with respect to the net cooling rate), different initial ISM density/entropy (which controls the growth timettiof the thermal instability), and different degrees of stratification (which affect the freefall timetff). We find that SNe Ia drive predominantly compressive turbulence in the ISM with a velocity dispersion ofσvup to 40 km s−1and logarithmic density dispersion ofσs∼ 0.2–0.4. These fluctuations trigger multiphase condensation in regions of the ISM, where min ( t ti ) / t ff 0.6 exp ( 6 σ s ) , in agreement with theoretical expectations that large density fluctuations efficiently trigger multiphase gas formation. Since the SN Ia rate is not self-adjusting, when the net cooling drops below the net heating rate, SNe Ia drive a hot wind which sweeps out most of the mass in our local model. Global simulations are required to assess the ultimate fate of this gas.  more » « less
Award ID(s):
2107872
PAR ID:
10500069
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 105
Size(s):
Article No. 105
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find ( Ω M , w ) = ( 0.264 0.096 + 0.074 , 0.80 0.16 + 0.14 ) in flatwCDM. For flatw0waCDM, we find ( Ω M , w 0 , w a ) = ( 0.495 0.043 + 0.033 , 0.36 0.30 + 0.36 , 8.8 4.5 + 3.7 ) , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. 
    more » « less
  2. Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over Z Z / Z 0.1 - 3 , gas surface density Σgas∼ 5–150Mpc−2, and stellar surface density Σstar∼ 1–50Mpc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5Mkpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight W . For given Σgasand Σstar, we find Σ SFR Z 0.3 . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as ϒ th W 0.46 Z 0.53 , while the combined turbulent and magnetic feedback yield shows weaker dependence ϒ turb + mag W 0.22 Z 0.18 . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved. 
    more » « less
  3. Abstract The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbation H ε ( p , q , I , φ , t ) = h ( I ) + i = 1 n ± 1 2 p i 2 + V i ( q i ) + ε H 1 ( p , q , I , φ , t ) , where ( p , q ) R n × T n , ( I , φ ) R d × T d withn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}. 
    more » « less
  4. Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are σ Ω M , stat + sys Λ CDM = 0.017 in a flat ΛCDM model, and ( σ Ω M , σ w ) stat + sys w CDM = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time. 
    more » « less
  5. Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rate m ̇ c to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb, m ̇ c reaches its maximum, m ̇ c , max 0.02 ( α / 0.3 ) 3 . If atr≫rbthe thin disk accretes with m ̇ d < m ̇ c , max , then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii. 
    more » « less